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Abstract

We study information aggregation in a dynamic trading model. We show the-
oretically that separable securities, introduced by Ostrovsky (2012) in the context
of Expected Utility, no longer aggregate information if some traders have imprecise
beliefs and are ambiguity averse. Moreover, these securities are prone to manipula-
tion as the degree of information aggregation can be influenced by the initial price
set by the uninformed market maker. These observations are also confirmed in our
laboratory experiment using prediction markets. We define a new class of strongly
separable securities, which are robust to the above considerations, and show that
they characterize information aggregation in both strategic and non-strategic en-
vironments. We derive several testable predictions, which we are able to confirm
in the laboratory. Finally, we show theoretically that strongly separable securities
are both sufficient and necessary for information aggregation but, strikingly, there
does not exist a security that is strongly separable for all information structures.
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1 Introduction

Making predictions about future events is an inescapable part of decision-making. Rev-
enues in the forecasting industry are estimated at around $300 billion in current dollars
(Atanasov et al. (2017)), hence even slightly better predictions are economically benefi-
cial for individuals, governments, firms and organizations. Prediction markets constitute
one of the most promising tools to perform forecasts as they leverage the wisdom of the
crowds by aggregating information that is dispersed among individuals.

In fact, in several cases, prediction markets perform significantly better than other
conventional forecasting methods, such as polls or expert opinion. Berg et al. (2008)
compared the predictions in the five presidential elections between 1988 and 2004 of
the Iowa Electronic Markets and those of 964 polls. They found that 74% of the time,
the prediction market was closer to the truth, whereas for forecasts 100 days before the
actual election, the prediction market outperformed the polls at every election. Cowgill
and Zitzewitz (2015) examined data from prediction markets ran by Google, Ford and an
anonymous basic materials conglomerate, and found that the internal prediction markets
conducted improved upon the forecasts of experts in all three firms by as much as a 25%
reduction in the mean squared errors.

Interestingly, in the case of a ‘once-in-a-lifetime’ event, prediction markets may fare
significantly worse. For instance, Cultivate Labs designed a prediction market on the
outcome of the Brexit referendum. It ran for 10 days prior to the polling day and
the closing prediction was a 15% probability of ‘leave,’ suggesting that the most likely
outcome would be ‘remain.’1 On the contrary, an average of all polls, reported by the
Financial Times on the day of the referendum, found 48% in favor of ‘remain’ and 46% in
favor of ‘leave,’ suggesting a probability of Brexit closer to 50%.2 Given that the actual
result was 48.1% in favor of ‘remain’ and 51.9% in favor of Brexit, the almost even split
between the two outcomes reported by the Financial Times seems more accurate than
the heavy favorite outcome of ‘remain’ suggested by the prediction market.

Clearly, there are limitations to the forecasting ability of prediction markets. In this
study, we examine the conditions under which prediction (and, more generally, financial)
markets are successful at aggregating information. In particular, can they aggregate
information for events that are rare or uncommon and for which beliefs are imprecise?
The literature has so far focused exclusively on traders with precise probabilities about
events and objective Expected Utility (EU) preferences. Specifically, Ostrovsky (2012)
has shown that with unique priors and EU preferences, when payoffs are determined
using the Market Scoring Rule (MSR) (Hanson (2003, 2007)), even if there are a few
large and strategic traders, information aggregates for a large class of securities, called
separable, which includes the Arrow-Debreu securities. More importantly, there are

1The market can be found at Cultivate Forecasts (2016).
2A closer look at the individual polls suggests a similar story. Throughout 2016, neither of the two

outcomes was a consistent winner and margins were always small. In the telephone polls, No Brexit
was a consistent winner but with a margin that was declining over time. The results can be found at
The Financial Times (2016a,b).
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securities that are separable for all information structures; thus, a market designer can
be sure that the prediction market will always aggregate information.

These results rely heavily on the assumption that traders share a unique (and com-
mon) prior. However, Brexit is a once-in-a-lifetime event for which no historical data
exist. How can we be sure that the traders have precise probabilities for such a hard-to-
quantify and unfamiliar event?3 If we cannot maintain the hypothesis of a unique prior
and EU, it is no longer the case that markets aggregate information even if the traders’
multiple priors are common. More importantly, a slight departure from a unique prior
could result in the traders agreeing on a security price that is far from its intrinsic value.

To show this, consider the ambiguity aversion model of Gilboa and Schmeidler (1989),
where a decision maker acts as if maximizing the minimum expected utility over a set
of multiple priors (henceforth, referred to as MEU preferences).4 An important insight,
which we prove in Lemma 1 and use heavily, is that with multiple priors, the optimal
announcement of a myopic trader is still unique and the expectation of the security
according to one of her beliefs. The choice of the belief, however, depends on the
previous announcement, thus introducing path-dependence (which is absent if the prior
is unique). If the previous announcement happens to be the expectation of the security
according to some of i’s beliefs, then i’s optimal myopic strategy is to repeat it. As we
show in the example of Section 2, path-dependence implies that the security is susceptible
to manipulation, for instance, by the market maker who sets the initial price and can
thus influence the degree of information aggregation.

To build some intuition, consider two individuals who trade an Arrow-Debreu security
X in a dynamic setting.5 Suppose there are three possible states: (i) Brexit, (ii) No
Brexit, and (iii) Referendum Cancelled. Security X pays 1 if Brexit occurs (i.e. the
intrinsic value in that state is 1) and 0 otherwise. The information structure is such that
Trader 1 cannot distinguish between Brexit and No Brexit, but knows if the referendum
is cancelled. Trader 2 cannot distinguish between Brexit and the referendum being
cancelled, but knows if the referendum result is No Brexit.6 To simplify the exposition,
we assume that the two traders are non-strategic and take turns (i.e. alternate) in
announcing the price to maximize their period payoff according to the Market Scoring
Rule (MSR). A scoring rule, like the quadratic, computes a score that increases as the
announced price gets closer to the intrinsic value of the security. The period payoff of
the MSR is the difference between the expected scores of the current and the previous

3Additional evidence is provided by Kilka and Weber (2001) who study experimentally the invest-
ment decisions of German subjects on stocks of, self-reported, familiar German banks and less familiar
Japanese ones. The authors report that German subjects have more ambiguous beliefs about the
associated outcomes of the Japanese banks. Earlier, Heath and Tversky (1991) found similar evidence.

4Anantanasuwong et al. (2019) use an incentivized survey on a representative sample of investors to
study ambiguity attitudes across different assets. They find that around 65% of investors are ambiguity
averse. Moreover, ambiguity aversion is highly and positively correlated across these assets.

5The formal treatment of this example for the case of a quadratic scoring rule is presented in Section
2. However, the arguments work for any proper scoring rule.

6Table 1 in Section 2 summarizes the information structure. Note that the traders’ combined infor-
mation always reveals the true state.
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announcement. Each announcement reveals some information about the intrinsic value
of the security, which may prompt the other trader to revise her announcement. We say
that information aggregates if the announcements converge to the intrinsic value of the
security.

Suppose that the true state is Brexit and the market maker’s initial announcement
is 0. In the EU framework, the initial announcement plays no role. When Trader 1
learns that the referendum is not cancelled, so that either Brexit or No Brexit is true,
she updates her unique belief and announces the expected value of X, which is a number
strictly between 0 and 1. This reveals to Trader 2 that the referendum is not cancelled,
otherwise Trader 1 would know it and announce a value of 0. Trader 2 already knows
that no Brexit is not true, hence announces 1. This informs Trader 1 that Brexit is true
and she also announces 1 leading to information aggregation.

In the MEU framework, the initial announcement is crucial and may prevent infor-
mation aggregation due to path-dependence. Suppose that at least one prior (but not
all) assigns zero probability to Brexit.7 When Trader 1 learns that the referendum is
not cancelled, she knows that either Brexit or No Brexit is true and updates each of her
priors. She then announces the expected value of X according to one of her updated
beliefs. Given that the previous announcement was 0 and the expected value of X ac-
cording to one of her beliefs is 0, she makes the exact same announcement.8 If there was
no Brexit, her information would be the same and so would make the same announce-
ment. If the referendum was cancelled, Trader 1 would know this (through her private
signal) and again announce 0. Given that the same announcement of 0 would be made
in all possible states, no public information is revealed from Trader 1’s announcement.
As a result, Trader 2 does not learn anything from Trader 1’s announcement and her
announcement is, for similar reasons, 0. In turn, Trader 1 also announces 0.

The market fails to aggregate information because both traders do not want to
deviate from an announcement of 0. However, if the initial announcement was different,
there would be information aggregation. In particular, in this example, any non-zero
initial announcement would prompt Trader 1 to announce something other than 0, which
would then reveal to Trader 2 that the referendum is not cancelled, hence Trader 2
would learn that there is Brexit and information would thus aggregate.9 In summary,
the example shows that information which would be revealed under EU preferences fails
to be revealed under MEU preferences.

We make three key contributions in this paper. First, to the best of our knowl-
edge, we are the first to analyze dynamic prediction markets with ambiguity aversion.
We propose a new class of strongly separable securities, and show that in a prediction
market which implements the MSR, they are necessary and sufficient for information

7This simplifies the exposition but it is not necessary. In Appendix C, we show how path-dependence
and no information aggregation can arise when all priors have full support.

8This is due to Lemma 1 as we explain above. Intuitively, due to her MEU preferences, she wants to
minimize the expected difference between her score and the score of the previous announcement. This
difference is minimized when the announcements coincide.

9In Appendix C, we show that one can easily construct examples where information aggregation fails
for multiple initial announcements.
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aggregation. Theorem 1 characterizes information aggregation in terms of strongly sep-
arable securities for the case of myopic players. For the case of strategic players, the
trading procedure is an infinite-horizon game with incomplete information. Given that
traders are ambiguity averse, they might be dynamically inconsistent. This means that
Trader i might devise an optimal continuation strategy at time t, which may not be
optimal for her at a later time. To tackle this problem, we generalize the Revision-Proof
equilibrium, first studied by Asheim (1997) and Ales and Sleet (2014) in the context
of infinite-horizon complete information games with time-inconsistent preferences, to
games with incomplete information. Theorem 2 shows that strongly separable securities
are both necessary and sufficient for information aggregation for all Revision-Proof equi-
libria. Although we prove these results for the MEU preferences model of (Gilboa and
Schmeidler (1989)), in the Supplementary Appendix, we show that they are also true
for the much larger class of Variational preferences (Maccheroni et al. (2006a,b)), which
includes, for example, the Multiplier preferences of Hansen and Sargent (2001), and the
class of Smooth Ambiguity preferences (Klibanoff et al. (2005)). Interestingly, the set of
strongly separable securities stays the same as we move from MEU to the general class
of Uncertainty Averse preferences (Cerreia-Vioglio et al. (2011)).

Our second contribution is an impossibility result. In Proposition 3, we show that no
security is strongly separable for all information structures and this result extends to all
Uncertainty Averse preferences.10 This property is not true for separable securities. For
example, Arrow-Debreu securities are always separable. Given that strongly separable
securities characterize information aggregation, we show that if we move away from EU
and precise beliefs, there is no prediction market that can aggregate information for
all possible information structures. Furthermore, if we cannot find a security that can
always aggregate information in the special case of prediction markets, we cannot hope to
find one in the more general class of financial markets. In other words, imprecise beliefs
can severely constrain the ability of markets to generically aggregate information, which
goes against the general consensus of the literature that starts with Hayek (1945).11 This
is detrimental to both investors and policy makers who can no longer trust that market
prices ‘incorporate all available information.’ Mispricing can have distortionary effects
on investment, stemming from under or over-investment. Moreover, path-dependence
and manipulation can lead to persistent price bubbles.

Our third contribution is to investigate and confirm our testable predictions in an
incentivized laboratory experiment that we conducted, where subjects assumed the role
of traders in prediction markets forecasting the value of a security in sequential trad-
ing. Specifically, we examined the impact on information aggregation of three dimen-
sions: the market type (unique priors and EU preferences vs. multiple priors and MEU

10See Section 1 of the Supplementary Appendix.
11Grossman (1976) showed that, in equilibrium, prices aggregate information. Radner (1979) in-

troduced the concept of Rational Expectations Equilibrium (REE) and proved that generically prices
aggregate information dispersed among traders. Several results regarding the convergence of REE in
dynamic settings have been shown by Hellwig (1982), McKelvey and Page (1986), Dubey et al. (1987),
Wolinsky (1990), and Golosov et al. (2014) among others. Siga and Mihm (2021) provide microfoun-
dations for REE using common-value auctions and study when prices aggregate information.
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preferences), the security type (separable vs. strongly separable), and the initial price
announcement of the market maker.

Our first set of results finds that in the case of separable securities, information aggre-
gation is significantly worse in environments with imprecise beliefs and ambiguity-averse
individuals compared to that in environments with precise beliefs and EU preferences.
This is not the case in the mirrored environments with strongly separable securities;
specifically, information aggregation across the two environments is not significantly dif-
ferent. The latter result is in line with our Theorems 1 and 2. Our second set of results,
finds that, in the case of separable securities, the initial price announcement of the mar-
ket maker in an environment with imprecise beliefs and ambiguity-averse individuals can
influence subjects’ behavior and, thereby, the degree of information aggregation. On the
contrary, in the case of strongly separable securities, the initial announcement does not
influence subjects’ behavior in the same environment, which is again consistent with our
theory. Taken together, these results suggest that strongly separable securities aggregate
information and are resilient to manipulation by the market maker in environments with
imprecise beliefs and ambiguity-aversion.

Our paper contributes to two main strands of the literature. The first strand looks at
ambiguity and information aggregation (revelation) in various contexts. The underlying
themes here revolve around information transmission, interpreting information and in-
formation acquisition. Condie and Ganguli (2011) demonstrate a failure of information
transmission with ambiguity averse agents in standard heterogeneous information ex-
change economies. In the context of common values voting games with ambiguity averse
voters, Ellis (2016) finds that there is no equilibrium in which information aggregates.
Chen (2022) allows informational ambiguity to occur naturally in a sequential learning
problem to find that it can result in an information cascade. Mailath and Samuelson
(2020) study agents who have different and incomplete models to elucidate the sense in
which interpretations can effectively aggregate information and generate approximate
consensus. Finally, Mele and Sangiorgi (2015) analyze costly information acquisition
in asset markets with ambiguity averse traders to show that when uncertainty is high
enough, information acquisition decisions become strategic complements and lead to
multiple equilibria.12

The second strand looks at the increasingly extensive literature on prediction mar-
kets.13 The first theme in this strand studies the degree and conditions of information
aggregation of prediction markets in various frameworks. Ostrovsky (2012) and Chen
et al. (2012) show that in a market with dynamically consistent traders, separable securi-
ties, introduced by DeMarzo and Skiadas (1998, 1999), are both necessary and sufficient
for information aggregation. Dimitrov and Sami (2008) and Chen et al. (2010) also look
at information aggregation but focus instead on varying the assumptions regarding the
traders’ information structure. The second theme asks whether prediction markets can

12Relatedly, Page and Siemroth (2017) study experimentally information acquisition in prediction
markets at the individual level to find that traders with larger endowments, existing inconclusive infor-
mation, lower risk aversion, and less experience in financial markets tend to acquire more information.

13See Wolfers and Zitzewitz (2004) for an early overview of the literature.
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be manipulated. In the theoretical literature, Ottaviani and Sørensen (2007) provide the
first formal analysis of outcome manipulation in a corporate prediction market setup,
where traders are able to influence the outcome. In the empirical literature, most studies
find very little evidence of price manipulation, both in the actual markets (see Camerer
(1998), Wolfers and Leigh (2002), Rhode and Strumpf (2004)), and in the laboratory
(Hanson et al. (2006), Hanson and Oprea (2009)). However, Zitzewitz (2007) and Snow-
berg et al. (2013) document a case from actual markets where a manipulator was able to
influence the price on an Arrow-Debreu contract. Along similar lines, Veiga and Vorsatz
(2010) show experimentally that, under some conditions, prices can be manipulated by
an uninformed trader, which is also corroborated in Jian and Sami (2012).

Although some aspects and ideas in the aforementioned studies do find common
ground in our study, what we propose here is different. First, we depart from (and thus
contribute to) the existing literature, by analyzing prediction markets with ambiguity
averse and dynamically inconsistent traders, not only for the MEU framework, but also
for the more general ones of Variational and Smooth Ambiguity preferences.14 We do so
because the alternative EU framework with traders that have precise beliefs is unrealistic
and highly stylized for events that are rare or unfamiliar. Our analysis culminates in a
profound result for asset markets in general: there is no way to build a securitization
scheme that will ensure information revelation for all information structures. Second,
our approach to investigate price manipulation is different from the existing studies.
We thus extend this stream of research by utilizing a new channel, where imprecise
beliefs interact with the initial price announcement of the uninformed market maker.
Consequently, we are able to vary directly the initial price to determine the effect on the
degree of information aggregation of the security. Third, our approach is holistic in the
sense that it combines testable predictions with an empirical investigation by means of
a controlled laboratory experiment.

The paper adheres to the following plan. In Section 2, we provide the formal treat-
ment of our introductory example. Section 3 describes the model. In Section 4, we
characterize information aggregation for the case of myopic traders, whereas in Section
5, we examine the case of strategic traders. In Section 6, we describe our experiment
and discuss the support for our theory. Finally, in Section 7, we conclude and offer
suggestions for future research. All proofs are included in the Appendices. In the Sup-
plementary Appendix, we extend our results to the framework of Uncertainty Averse
preferences, show the existence of a Revision-Proof equilibrium, and include the experi-
mental instructions.

14Galanis and Kotronis (2021) also study prediction markets with dynamically inconsistent traders.
However, the cause is not ambiguity aversion but being boundedly rational and unaware of some signals
(Galanis (2011, 2013)).
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2 An Example

In this section, we describe in detail the 2016 Brexit referendum example of the Introduc-
tion. The dynamic trading mechanism begins with an initial public announcement about
the value of the security by the market maker and with nature choosing a state. Then,
each trader sequentially announces in public her prediction, which may reveal some of
her private information. A score for each prediction, based on a strictly proper scoring
rule, is calculated after trading ends and the true state is revealed. For non-strategic
traders, who only care about their current payoff, MSR ensures that the optimal strat-
egy is to announce the expected value of the security given their posterior beliefs. The
per-period utility of a trader is calculated by subtracting, from the score of her predic-
tion, the score of the prediction made by the previous trader. A potential interpretation
could be that each time a trader makes a prediction, she ‘buys out’ the previous one.

The state space has three states, Ω = {ω1, ω2, ω3}, which correspond to Brexit,
No Brexit and Referendum Cancelled, respectively. Trader 1’s information partition is
Π1 = {{ω1, ω2}, {ω3}}, whereas Trader 2’s is Π2 = {{ω1, ω3}, {ω2}}. They trade an
Arrow-Debreu security X that pays 1 at ω1 (i.e. if Brexit occurs) and 0 otherwise. The
information structure is depicted in Table 1. In particular, Trader 1 is informed whether
the referendum is cancelled or not. Trader 2 is informed whether the referendum’s result
is against Brexit or not. Notice that the two traders’ pooled information always reveals
the true state.

Table 1: Information Structure

Outcome Trader 1’s Signal Trader 2’s Signal

Brexit Referendum Not Cancelled Either Brexit or Cancelled

No Brexit Referendum Not Cancelled No Brexit

Referendum Cancelled Referendum Cancelled Either Brexit or Cancelled

Notes: The Table depicts the private signals of Trader 1 and Trader 2. The two traders’ pooled

information always reveals the true state.

The two traders are non-strategic, they have MEU preferences and share a com-
mon set of priors P , which is the convex hull of p1 = (0, 1

2
, 1
2
) and p2 = (1

3
, 1
3
, 1
3
). If

trader i’s announcement is y, the intrinsic value of the security is x∗ = X(ω), and
the announcement of the previous trader (or the market maker) is z, then i’s utility is
s(y, x∗) − s(z, x∗), where s(y, x∗) = −(y − x∗)2 is the quadratic scoring rule (or, more
generally, a proper scoring rule).

Trader i announces y that solves her myopic problem

max
y∈[y,y]

min
p∈P

Ep[s(y,X)− s(z,X)],

where y, y are the minimum and maximum announcements, respectively.
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By announcing y = z, she can secure a payoff of zero. Because s is a proper scoring
rule, and sets [y, y],P are convex and compact, the minimax theorem applies and we
can consider the dual problem

min
p∈P

max
y∈[y,y]

Ep[s(y,X)− s(z,X)].

The inner max problem is solved for each unique prior p, hence the unique solution is
y = Ep[X], as in Ostrovsky (2012), because s is a proper scoring rule. We can therefore
simplify the problem to

min
p∈P

Ep[s(Ep[X], X)− s(z,X)].

Note that if the prior is unique, as in the EU framework, the optimal announcement
is independent of the previous announcement z. With MEU preferences, the announce-
ment is still the expectation of X, but according to some p ∈ P that depends on the
previous announcement z, thus introducing path-dependence. Moreover, if the previous
announcement is the expectation of X according to one of her beliefs p ∈ P , so that
Ep[X] = z, then she will repeat the same announcement securing a payoff of zero.15

The reason is that she wants to minimize the expected difference between the score of
her prediction and the score of the previous announcement because she evaluates this
difference using the worst possible probability due to her MEU preferences.16 However,
this creates inertia as traders try to announce as close as possible to the previous an-
nouncement given the constraint that their announcement must be the expectation of
X according to one of their beliefs. If Trader 1’s announcement is the expected value
of X according to one of Trader 2’s beliefs, then she will repeat it, prompting Trader 1
to do the same so that there is no more updating of information and, consequently, no
information aggregation.

Suppose that the true state is ω1 so that the correct price to be inferred is x∗ =
X(ω1) = 1. Moreover, suppose that the initial price of the security is y0 = 0 set by the
market maker. Trader 1 is informed that E1 = {ω1, ω2} has occurred and maximizes
her utility myopically. If she announces 1, her payoff is the difference between the
expected score of 1 and the expected score of 0. With MEU preferences, she considers
the worst-case scenario by choosing p that minimizes her expected payoff. This means
that she will choose p that maximizes the score of announcing 0 and minimizes the
score of announcing 1. The reason is that scoring rules are ‘order-sensitive,’ so that the
further away the forecast is from the true expected value, according to the chosen p, the
lower is the expectation of the score. This means that she will get a negative payoff by
announcing 1. If her announcement is closer to 0, the negative expected payoff decreases,
irrespective of which p she uses to evaluate it. In fact, the optimal announcement is to
repeat 0 because her payoff will then be zero for all p.

15We summarize these points in Lemma 1.
16In Subsection 3.3, we provide intuition about this property.
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Formally, using Lemma 1 and letting pE1 be the conditional of p given E1, the
solution to her maxmin problem is the same as the solution to her minimax prob-
lem. Hence, she minimizes over her priors and for each prior she maximizes her ex-
pected utility by announcing the expected value of the security EpE1

[X]. We therefore
have min

p∈P
EpE1

[s(EpE1
[X], X(ω))− s(0, X(ω))] = min

p∈P
[pE1(ω1)

2(2− pE1(ω1)− pE1(ω2))] =

min
p∈P

pE1(ω1)
2. We conclude that the solution is p1 with p1(ω1) = 0 and her prediction is

y1 = 0. If the true state was ω3, she would know that the intrinsic value of X was 0 and
she would announce 0.

The above imply that Trader 2 cannot learn anything from Trader 1’s announcement,
hence can only rely on her private signal E2 = {ω1, ω3}. Maximizing myopically her
utility, she solves min

p∈P
EpE2

[s(EpE2
[X], X(ω))− s(0, X(ω))] = min

p∈P
[pE2(ω1)

2(2− pE2(ω1)−

pE2(ω3)] = min
p∈P

pE2(ω1)
2. The solution is again p1, with p1(ω1) = 0, and her prediction

is y2 = 0.
Each trader learns nothing from the other’s announcement, which is always 0. Hence,

both traders agree on repeating a price of 0 for the security. Given that the intrinsic value
of the security at ω1 is 1, there is no information aggregation, even though their pooled
information would reveal that the true state is ω1 and the intrinsic value is 1. However,
if the state is either ω2 or ω3, an initial announcement of 0 will lead to information
aggregation as the traders will agree on that price.

We make the following observations. First, the same result of no aggregation can
be obtained if the common set of priors is the convex hull of p1 = (0, 1

2
, 1
2
) and p2 =

(ϵ, 1−ϵ
2
, 1−ϵ

2
), where 0 < ϵ ≤ 1

3
. Hence, even if belief imprecision is vanishingly small, a

prediction market may fail to aggregate information. Second, in this example, there is a
belief p that assigns probability zero to the true state ω1. However, this is not necessary.
Example 1 in Appendix C shows that information aggregation can also fail when all
priors have full support.

Third, the initial announcement by the market maker is crucial. An announcement of
1 when the true state is ω1 leads to information aggregation. The reason is that Trader 1
would announce 1 at ω1 or ω2 and 0 at ω3, thus revealing to Trader 2 that the true state
is ω1.

17 However, it is impossible for an uninformed market maker to know whether 1 or
0 is the ‘correct’ initial announcement. More importantly, information aggregation fails
only when the initial announcement is 0. Nevertheless, this is due to the simplicity of the
example. In Appendix C, we show how to easily construct examples where information
aggregation fails for multiple initial announcements. Finally, the result of no aggregation
does not depend on the quadratic scoring rule, but it is true for all proper scoring rules.
The third claim of Lemma 1 shows that as long as the market maker’s announcement
is 0 and the expectation of X according to one of Trader 1’s beliefs is 0, then Trader 1
will also announce 0.

17Note that, in this case, Trader 2 would not be able to do prior-by-prior updating on the specific
p that assigns zero probability to state ω1. As this case is not the main focus of our example, we
nevertheless chose to keep it. We could present here Example 1 of Appendix C with full support priors
in order to avoid the issue, however, it is a more complicated example without any further insights.
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To accommodate the case of imprecise probabilities, consider security X ′ that pays
0 if there is no referendum and 1 otherwise. Then, Trader 1 always knows the value of
the security. This implies that, irrespective of the initial announcement, Trader 1 will
announce 0 if there is no referendum and 1 otherwise. If the true state is Brexit, Trader
1’s announcement reveals to Trader 2 that the referendum took place. Since she already
knows that No Brexit is not true, she deduces that the true state is Brexit and repeats
the announcement of 1. Irrespective of what the true state is and what the beliefs of the
traders are, the two traders always agree eventually on the intrinsic value of the security,
hence there is information aggregation. It is straightforward to check that, whatever the
public information is generated from previous announcements, one of the two traders
knows the intrinsic value of the security. As we show in Corollary 1, this is a sufficient
condition for strong separability.

SecurityX ′ aggregates information for any initial announcement of the market maker,
irrespective of whether market participants have precise probabilities, or they are ambi-
guity averse and have multiple priors. Hence, it is robust as compared to the separable
securities of Ostrovsky (2012). Moreover, security X ′ is immune to manipulation by the
market maker. We call such securities strongly separable and show that they are always
separable, but the converse is not true. Theorems 1 and 2 characterize information
aggregation in terms of strongly separable securities for the non-strategic and strategic
environments, respectively.

We conclude the example by commenting on the generality and applicability of the
MSR. A prediction market with a MSR can be reinterpreted as an inventory-based mar-
ket with a market maker who continuously adjusts the price of the securities depending
on the orders she receives. Ostrovsky (2012) establishes such a justification and Example
2 in Appendix C provides the details for the case of ambiguity aversion. The advantage
of the MSR over more well known market mechanisms, such as the continuous double
auction, is that an agent can make her prediction/trade without waiting for another
agent to take the opposite side, or submit a limit order and wait for it to be filled. This
feature makes it an attractive mechanism for markets with relatively few participants
who do not trade daily. MSR-based prediction markets have been used widely, for exam-
ple, by firms such as Ford, Google, General Electric and Chevron (see Ostrovsky (2012),
Cowgill and Zitzewitz (2015)) as well as governments, for example, that in the UK and
the Czech Republic (The Economist (2021)).18

3 The Model

In this section, we describe the ambiguity averse preferences of the traders and the MSR
trading environment, which, in turn, is based on proper scoring rules (e.g. Brier (1950)).

18Firms and governments use companies such as Cipher and Cultivate Labs to implement MSR-
based prediction markets. See Cultivate Labs (2021) for an explanation of how the logarithmic MSR is
implemented in practice and Schlegel et al. (2022) for axiomatic foundations.
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We next distinguish between two cases. In the first case, all traders are myopic so that
they only care about the current period’s payoff. In the second case, all traders act
strategically and care about the future.

3.1 Preferences and updating

Consider a finite state space Ω = {ω1, ..., ωl} and let the powerset 2Ω be the σ-algebra
over Ω. Traders are ambiguity averse and have MEU preferences (Gilboa and Schmeidler
(1989)). In particular, each trader evaluates act f : Ω → R as

V (f) = min
p∈P

∫
u(f(s))dp(s),

where u : R → R is a utility index, and P is a convex and closed subset of ∆(Ω). We as-
sume that P is common among all traders and, without loss of generality,

⋃
p∈P

Supp(p) =

Ω so that each state is considered possible by some p ∈ P . Traders are risk-neutral so
u(x) = x.

The set of traders is I = {1, . . . , n}. Trader i’s initial private information is repre-
sented by partition Πi of Ω. When the true state is ω ∈ Ω, Trader i considers the set of
states Πi(ω) ⊆ Ω to be possible. As in Ostrovsky (2012), we assume that the join (the
coarsest common refinement) of partitions Π = {Π1, . . .Πn} consists of all states in Ω
so that

⋂
i∈I

Πi(ω) = {ω} for all ω ∈ Ω. In other words, the traders’ pooled information

always reveals the true state. This implies that, for any two states ω1 ̸= ω2, there exists
Trader i who can distinguish between them so that Πi(ω1) ̸= Πi(ω2).

We argue that this is a reasonable assumption for two reasons. First, if the conjunc-
tion of the traders’ private information cannot distinguish between two states, we cannot
expect that a security which pays differently in these two states can achieve information
aggregation as this would imply that the market has more information than all traders
combined.19 We therefore do not consider securities that pay differently within an ele-
ment of the coarsest common refinement. Second, given that restriction, it is without
loss of generality to consider each element of the coarsest common refinement to be a
state rather than a set of states.

When a trader learns event E, her beliefs are PE, the prior-by-prior updating of P .20

This rule is well-defined as long as each prior assigns positive probability to E. We say
that measures p1, p2 ∈ P are mutually absolutely continuous with respect to a collection
of events E if, for all E ∈ E , p1(E) = 0 if and only if p2(E) = 0. Compact and convex set
P ⊆ ∆(Ω) is regular with respect to E if all p1, p2 ∈ P are mutually absolutely continuous
with respect to E . We interpret E as the collection of all events that can be revealed when

19As we explain in Subsection 3.4, information aggregation means that the price of the security
converges to its intrinsic value. Thus, an outside observer, without any private information and just
by observing the price, would be able to distinguish between the two states, effectively having more
information than all traders combined.

20This rule is axiomatized in Pires (2002).
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traders make announcements. Hence, if all priors assign positive probability, prior-by-
prior updating is well-defined. However, note that regularity does not imply that priors
have the same support. For example, it is possible that measure p assigns probability
zero to state ω, whereas other measures do not. If event {ω} does not belong to E , then,
P can be regular with respect to E .

3.2 Trading environment

Trading is organized as follows. At time t0 = 0, nature selects a state ω∗ ∈ Ω and the
uninformed market maker makes a prediction y0 about the value of security X : Ω → R.
At time t1 > t0, Trader 1 makes a revised prediction y1, then at t2 > t1 Trader 2 makes
her prediction, and so on. At time tn+1 > tn, Trader 1 makes another prediction yn+1.
Let ak be the trader that makes a prediction at time tk. All predictions are observed by
all traders. Each prediction yk is required to be within the set [y, y], where y = min

ω∈Ω
X(ω)

and y = max
ω∈Ω

X(ω).

The process repeats until time t∞ = limk→∞ tk. At time t∗ > t∞, the intrinsic value
x∗ = X(ω∗) is revealed. The traders’ payoffs are computed using a scoring rule s(y, x∗),
where x∗ is the intrinsic value of the security and y is a prediction. A scoring rule is
proper if, for any probability measure p and any random variable X, the expectation of
s is maximized at y = Ep[X]. It is strictly proper if y is unique. We focus on continuous
strictly proper scoring rules. Examples are the quadratic, where s(y, x) = −(x−y)2, and
the logarithmic, where s(y, x) = (x−a)ln(y−a)+(b−x)ln(b−y) with a < min

ω∈Ω
X(ω), b >

max
ω∈Ω

X(ω).

Under the basic MSR (McKelvey and Page (1990), Hanson (2003, 2007)), a trader
is paid for each revision she makes. In particular, her payoff from announcing ytk at
tk is s(ytk , x

∗) − s(ytk−1
, x∗), where ytk−1

is the previous announcement and x∗ is the
intrinsic value of the security. We then say that the trader ‘buys out’ the previous
trader’s prediction.21

The assumption that the payoff is the difference between the previous and the cur-
rent scores is an inconsequential normalization with EU preferences and myopic traders
because a myopic trader will always announce the expected value of the security accord-
ing to her measure. With MEU preferences, behavior can change drastically because
the measure that minimizes the expected score of the announcement may not be the
same as the one that minimizes the expected difference of the two scores. Although this
presents some limitations, we argue that the MSR is a reasonable assumption for two
reasons. First, the MSR is used in the real world, in both public and corporate predic-
tion markets. Second, the MSR can be reinterpreted as an inventory-based market with

21A trader can be guaranteed a payoff of zero by repeating the previous announcement or by abstaining
from the market. It would be interesting to separate the two by providing an explicit outside option to
the traders. However, such direction is outside the scope of this study and is thus deferred for future
research.
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a market maker who continuously adjusts the price of the securities depending on the
orders she receives, as we explain in Section 2 and in Example 2 of Appendix C.

We examine trading in two settings. The myopic or non-strategic is analyzed in
Section 4, where each trader does not care about future payoffs when making an an-
nouncement.22 We denote this setting by ΓM(Ω, I,Π, X,P , y0, y, y, s). The strategic
setting is studied in Section 5. Following Dimitrov and Sami (2008), we focus on the
discounted MSR, which specifies that the payment at tk is βk(s(ytk , x

∗) − s(ytk−1
, x∗)),

where 0 ≤ β ≤ 1. The total payoff of each trader is the sum of all payments for revisions.
We denote this setting by ΓS(Ω, I,Π, X,P , y0, y, y, s, β).

3.3 Properties of scoring rules

In the EU framework, the optimal (myopic) choice of ytk that maximizes Ep[s(ytk , x
∗)−

s(ytk−1
, x∗)] does not depend on the previous announcement ytk−1

because p is fixed. This
is no longer the case with MEU preferences and multiple priors P , further complicating
our analysis. However, the following lemma establishes three properties that we use
heavily.23 First, the optimal (myopic) announcement is still unique for continuous strictly
proper scoring rules. Second, the announcement is the expectation of X according to
some belief in P . Third, the announcement coincides with the previous one if the latter
is the expectation of X according to some belief in P .

Lemma 1. Let s be a continuous strictly proper scoring rule on [y, y] and let z ∈ [y, y]
be an announcement. Then,

• y∗ ≡ argmax
y∈[y,y]

min
p∈P

Ep

[
s(y,X)− s(z,X)

]
is unique,

• y∗ = Ep[X] for some (not necessarily unique) p ∈ argmin
p∈P

max
y∈[y,y]

Ep

[
s(y,X) −

s(z,X)
]
,

• if z = Ep[X] for some p ∈ P, then y∗ = z.

As s is a proper scoring rule, hence the optimal announcement is Ep[X], when the
expected score is evaluated using p, the second property implies that y∗ = Ep[X] for
some (not necessarily unique) p ∈ argmin

p∈P
Ep

[
s(Ep[X], X) − s(z,X)

]
. In other words,

the maxmin operation simplifies to choosing probability p that minimizes her expected
score given that she announces Ep[X].

To provide some intuition for the third property, first note that given an announce-
ment y∗, MEU preferences imply that the trader will evaluate her period payoff by

22With EU preferences, this non-strategic setting effectively turns into the communication process
of Geanakoplos and Polemarchakis (1982), where traders sequentially announce posterior beliefs about
an event. Several other papers extend this process to other aggregate statistics, such as Cave (1983),
Sebenius and Geanakoplos (1983), Nielsen (1984), Bacharach (1985) and Nielsen et al. (1990).

23Lemma 1 is related to a result in Chambers (2008). The proofs are closely related too.
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minimizing over all available beliefs in P . Moreover, scoring rules are ‘order-sensitive’
so that the further away the forecast is from the true expected value, according to the
chosen p, the lower is the expectation of the score. These two properties imply that the
trader will minimize her expected utility by picking the probability that maximizes the
expected score of the previous announcement, which is subtracted from her payoff, and
minimizes the expected score of her own announcement, which is added. The only way
of counteracting this worst-case scenario is by announcing as close as possible to the
previous announcement, given the constraint that it must be the expectation of X ac-
cording to some p ∈ P . Moreover, if it is possible to repeat the previous announcement,
she will do that and get 0, which is the minimum payoff when announcing the myopic
best response.

3.4 Information aggregation

We say that information aggregates if the traders’ predictions converge to the intrinsic
value X(ω) of security X, for all ω ∈ Ω. For every ω ∈ Ω, let yk(ω) be the announcement
of the trader who moves in period tk. The announcement yk(ω) depends on ω because
traders have different private information across states. Because {yk}∞k=1 is a sequence
of random variables, we need a probabilistic version of convergence.

Definition 1. Under a profile of strategies in ΓM or ΓS, information aggregates if se-
quence {yk}∞k=1 converges in probability to random variable X.

Note that our definition of information aggregation does not specify how prices will
evolve in the middle of the game for some t. In fact, it is perfectly possible that prices
will diverge widely before they start converging to the intrinsic value of the security.
Moreover, the intrinsic value X(ω) is defined objectively, for each ω, and it does not
depend on the traders’ multiple priors.24

3.5 Strong separability

Ostrovsky (2012) introduced the notion of separable securities, which are sufficient for
aggregating information in an environment with EU.

Definition 2. A security X is called non-separable under partition structure Π if there
exists probability p and value v ∈ R such that:

(i) X(ω) ̸= v for some ω ∈ Supp(p),

(ii) Ep[X|Πi(ω)] = v for all i = 1, ..., n and ω ∈ Supp(p).

24As Harrison and Kreps (1978) comment, it may not be possible to define an objective intrinsic value
for some t in the middle of the game if traders do not share a common unique prior, or if they have
multiple priors. This means that our model only deals with what happens in the long-run. We thank
an anonymous referee for pointing out this issue.
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Otherwise, it is called separable.

A security X is non-separable if, for some belief p that assigns positive probability
to a state where X does not pay v, all traders agree on its conditional expected value to
be v, irrespective of which private signal they have received. In such a case, even if all
traders truthfully and repeatedly announce v, no new information is revealed. However,
their pooled information reveals the state, hence information aggregation fails.25 To
avoid this, the security must be separable. The most common example is the Arrow-
Debreu security, which pays 1 at some state and 0 otherwise. Unfortunately, separable
securities may not aggregate information with ambiguity aversion as shown in Section
2.

In order to maintain information aggregation in an environment with ambiguity
aversion, we need to strengthen the notion of separability. Treating security X as given,
let

dP(E, v) = argmax
y∈[y,y]

min
p∈PE

Ep

[
s(y,X)− s(v,X)

]
be the (unique from Lemma 1) myopic announcement that maximizes the trader’s cur-
rent period’s utility if her beliefs are PE and the previous announcement was v. Note
that if P = {p} is a singleton so that we are back to the EU case, dP(E, v) = Ep[X|E]
for any v and proper scoring rule s. Hence, the myopic announcement dP(E, v) under
ambiguity is a direct generalization of the myopic announcement under EU, Ep[X|E].
Below, we generalize the notion of separability by substituting Ep[X|E] with dP(E, v).
To save on notation and since security X is fixed throughout the paper, we omit it.

Definition 3. A security X is called not strongly separable under partition structure
Π and proper scoring rule s if there exist a regular P ⊆ ∆(Ω) with respect to each Πi,
i = 1, ..., n, and v ∈ R such that:

(i) X(ω) ̸= v for some ω ∈
⋃
p∈P

Supp(p),

(ii) dP(Πi(ω), v) = v for all i = 1, ..., n and ω ∈
⋃
p∈P

Supp(p).

Otherwise, it is called strongly separable.

The interpretation of a not strongly separable security is similar to that of a non-
separable security. The only difference is that P is not a singleton and, as a result, the
myopic announcement Ep[X|Πi(ω)] = v under EU is replaced by the myopic announce-
ment dP(Πi(ω), v) = v under MEU. However, in both definitions, each trader announces
v given that the previous announcement was v and irrespective of the private signal

25An example of a non-separable security is provided by Ostrovsky (2012). Let Ω = {ω1, ω2, ω3, ω4}
and suppose X(ω1) = X(ω4) = 1, X(ω2) = X(ω3) = −1. Partitions are Π1 = {{ω1, ω2}, {ω3, ω4}} and
Π2 = {{ω1, ω3}, {ω2, ω4}}. For p that assigns 1/4 at each state, both players always have an expectation
of 0, although their pooled information always reveals the intrinsic value of X, which is never 0.
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that she has received. We also require that P is regular with respect to each Trader’s
partition so that prior-by-prior updating is well-defined.

A potential issue about the definition of strong separability is that it depends on the
particular scoring rule because dP(E, v) = argmax

y∈[y,y]
min
p∈PE

Ep

[
s(y,X)−s(v,X)

]
. This is not

the case for separability, which only depends on the information structure. Proposition
2, discussed later in this section, establishes that strong separability is also independent
of the particular continuous strictly proper scoring rule.

In the example of Section 2, the Arrow-Debreu security is not strongly separable
given the information structure. To see this, note that condition (ii) in the definition is
satisfied for all states with v = 0. Since some priors put strictly positive probability to
ω1 and X(ω1) = 1 ̸= v, condition (i) is also satisfied.

Observe that if a security is non-separable (for some prior p), then it is not strongly
separable as well (for P = {p}). This means that strong separability implies separability.
Moreover, the converse is not true as shown in Section 2. As we discuss after Proposition
2, for any information structure, there exists a strongly separable security. For example,
consider state space Ω = {ω1, ω2, ω3} and security X with X(ω1) = X(ω2) = 1, X(ω3) =
0. Under the partition structure Π1 = {{ω1, ω2}, {ω3}},Π2 = {{ω1, ω3}, {ω2}} and any
continuous proper scoring rule, X is strongly separable.

Ostrovsky (2012) proposes a useful characterization of separable securities. It spec-
ifies that X is separable if and only if for any possible announcement v, we can find
numbers λi(Πi(ω)) for each i and ω, such that the sum over all traders has the same
sign as the difference of X(ω)− v. Intuitively, for any v and at each ω, all traders ‘vote’
and the sign of the sum of the votes has to agree with the sign of the difference between
the value of the security and v.

Proposition 1 (Ostrovsky (2012)). Security X is separable under partition structure Π
if and only if, for every v ∈ R, there exist functions λi : Πi → R for i = 1, . . . , n such
that, for every state ω with X(ω) ̸= v,

(X(ω)− v)
∑
i∈I

λi(Πi(ω)) > 0.

We provide a similar but stronger condition that characterizes strong separability. It
specifies that, given any v and conditional on any event E where X is never equal to v,
there is a trader who knows at some state in E that X is either always above or always
below v. We can interpret E as the public information that is revealed by hearing the
previous announcements, and v as the current price of the security. Hence, the condition
requires that, at any period, at least one trader knows whether the intrinsic value of the
security is either higher or lower than the current price. Note that this trader may not
be the one who makes the announcement in the next period.

Proposition 2. Security X is strongly separable under partition structure Π if and only
if for any v ∈ R, for any non-empty event E ⊆ {ω ∈ Ω : X(ω) ̸= v}, there exists Trader
i, state ω ∈ E and λ ∈ R such that for all ω′ ∈ Πi(ω) ∩ E,

(X(ω′)− v)λ > 0.

16



In the Supplementary Appendix, we show that the same condition characterizes
strongly separable securities in the much more general framework of Uncertainty Averse
preferences. Hence, the set of strongly separable securities is the same and all the
properties discussed next (Subsection 3.6) apply to Uncertainty Averse preferences as
well. This is surprising because, when we move from EU to MEU, the set of separable
securities is a strict subset of the set of strongly separable securities. We discuss the
intuition behind this result in the Supplementary Appendix.

3.6 Properties of strongly separable securities

In order to better understand strongly separable securities, we establish the following
properties. Fix an information structure. First, there always exists a non-constant,
strongly separable security. In particular, we can construct one which predicts all possi-
ble events (Lemma 2). This means that, just by observing the price of the security and
as it converges to the security’s intrinsic value due to information aggregation, an outside
observer learns whether the event has occurred or not. Second, we find a sufficient con-
dition to easily check whether a security is strongly separable (Corollary 1). It requires
that for any event E, there exists at least one trader who would know the security’s
value if she was informed of that event.26 As with Proposition 2, we can interpret E as
the public information that is revealed by the previous announcements. This condition
allows us to easily construct strongly separable securities for any information structure.
We describe such an algorithm below. The final property is an impossibility result and
one of our main contributions (Proposition 3). In sharp contrast to the EU framework
with separable securities, in the framework with MEU preferences, there does not exist
a security that is strongly separable for all information structures.

We say that an event E is predictable by security X if the values it assigns to states
in E are different from the values it assigns to states not in E. Formally, if ω ∈ E
and ω′ ∈ Ec, then X(ω) ̸= X(ω′). We then say that X is informative for E because
if the price of X converges to its intrinsic value at all states, then it will be revealed
whether E has occurred. For the EU model, Chen et al. (2012) show in Theorem 5 that
there always exists a separable security that is informative for all events. We show that
the same is true for the MEU model. We construct a sequence of strongly separable
securities, X1, . . . , Xn, where the collection of predictable events by Xk is larger than
that by Xk−1 for k = 2, . . . n. The last security Xn, where n is the number of Traders,
assigns a different value to each state, hence all events are predictable.

1. Fix the order of Traders 1, 2, . . . , n. Order Trader 1’s partition elements {Π1(ω)}ω∈Ω
from 1 to k1. If Π1(ω) is the jth partition element, assign value X1(ω

′) = j to all
ω′ ∈ Π1(ω). As X1 provides a different payoff to each of Trader 1’s partition ele-
ments, X1 can predict all events in Trader 1’s partition together with any of their
unions.

26In practice, one needs to check only events for which the security specifies different values; as for
the rest, the condition is automatically satisfied.
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2. Security X2 assigns a different value to each event in the collection {
⋂

i=1,2

Πi(ω)}ω∈Ω.

Order 2’s partition elements, {Π2(ω)}ω∈Ω from 1 to k2. If X1(Π1(ω)) = m and
Π2(ω) is the jth partition element, assign value X2(ω

′) = m + j−1
k2

to all ω′ ∈⋂
i=1,2

Πi(ω). Security X2 predicts all events in {
⋂

i=1,2

Πi(ω)}ω∈Ω together with any of

their unions. Hence, it predicts more events than X1.

3. Inductively, for security Xl we order l’s partition elements {Πl(ω)}ω∈Ω from 1 to
kl. If Xl−1(

⋂
i=1,...,l−1

Πi(ω)) = m, the next highest value of Xl−1 is m′ and Πl(ω)

is the jth partition element, then assign value Xl(ω
′) = m + j−1

kl
(m′ − m) to all

ω′ ∈
⋂

i=1,...,l

Πi(ω). By construction, from security Xl to security Xl+1 the ordering

of states is preserved. That is, if Xl(ω) < Xl(ω
′), then Xl+1(ω) < Xl+1(ω

′).

4. The final security Xn assigns a different value to each state because of our assump-
tion that

⋂
i∈I

Πi(ω) = {ω} for all ω ∈ Ω. Hence, it can predict any event.

The following lemma shows that these securities are strongly separable. Hence, we
can always construct non-trivial strongly separable securities, some of which can predict
all possible events. However, it is important to note that not all securities that assign a
different value to each state, and therefore can predict any event, are strongly separable.
For a counter example, see Example 1 in Appendix C.

Lemma 2. Securities X1, . . . , Xn are strongly separable.

The following Corollary provides a sufficient condition for strong separability. It
requires that conditioning on any event E, there is at least one trader who knows the
value of the security.

Corollary 1. Suppose that for any event E, there exist Trader i and state ω ∈ E such
that Πi(ω) ∩ E ⊆ X−1(k) for some k. Then, security X is strongly separable under
partition structure Π.

Using this Corollary, we can construct a strongly separable security in the following
way given any information structure. First, fix an order of traders T = 1, 2, . . .. A
specific trader may appear more than once in T and its cardinality is weakly less than
the cardinality of Ω. Pick Trader 1 and a state ω1 ∈ E1 ≡ Ω, assigning value X(ω′) = k1
for all ω′ ∈ Π1(ω1). Then, pick Trader 2 and a state ω2 ∈ E2 = E1 \ Π1(ω1), assigning
value X(ω′) = k2 for all ω′ ∈ Π2(ω2) ∩ E2. This process continues using ωi+1 ∈ Ei+1 =
Ei \ Πi(ωi), assigning value X(ω′) = ki+1 for all ω′ ∈ Πi+1(ωi+1) ∩ Ei+1 for i ≥ 2 until
Ei+1 becomes empty. To see how we can apply Corollary 1, take any event E. If there
exists ω ∈ E ∩ Π1(ω1) ̸= ∅, then Π1(ω) ∩ E ⊆ X−1(k1). If E ∩ Π1(ω1) = ∅ but there
is some state ω ∈ Π2(ω2) ∩ E, then E ⊆ E2 and Π2(ω) ∩ E ⊆ X−1(k2). Continuing
inductively, we can find some Trader i and state ω ∈ E such that Πi(ω)∩E ⊆ X−1(ki).
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The last question is whether there exists a security that is strongly separable for all
information structures. Recall that there are several securities that are separable for all
information structures, such as the Arrow-Debreu. However, the following proposition
shows that there is no security which is strongly separable for all information structures.

Proposition 3. If state space Ω has at least three states, there is no (non-constant)
security X which is strongly separable under all partition structures Π = {Π1, . . .Πn},
where the join of Π consists of singleton sets.

As we show in subsequent subsections (Theorems 1 and 2), strong separability is
not only sufficient but also necessary for information aggregation under ambiguity. This
suggests a negative result as there is no security that aggregates information for all
information structures in contrast to the EU case. In other words, if an outside observer
does not know the traders’ information structure, there is no way of being sure that a
particular security is strongly separable and therefore will aggregate information.

More interestingly, a security which has been successful at aggregating information
(because of the particular information structure), may subsequently fail to do so, once
the composition of the traders and their information changes. Although this negative
result is shown for the specific case of prediction markets, it is also a negative result
for financial markets in general. This means that markets may fail to predict events
and that prices do not incorporate all available information. Moreover, as we show in
Proposition 5 in the Supplementary Appendix, the set of strongly separable securities
does not change in the much more general framework of Uncertainty Averse preferences.
Hence, this negative result is robust.

4 Myopic Traders

Let ΓM(Ω, I,Π, X,P , y0, y, y, s) be an environment with myopic traders who only care
about their period t payoff when making an announcement at t. Suppose ω∗ is the
true state and y0 is the market maker’s initial announcement. At time t1, Trader 1
announces her prediction y1 = dP(Π1(ω

∗), y0) = argmax
y∈[y,y]

min
p∈PΠ1(ω

∗)
Ep

[
s(y,X)− s(y0, X)

]
.

As mentioned above, y1 depends on the market maker’s announcement y0, which is not
the case with EU.

The prediction of any trader is public, therefore the new information revealed refines
the information partitions of all other traders. In particular, the initial public informa-
tion at t0 is F0(ω∗) = Ω. At t1, Trader 1 announces y1 = dP(F0(ω∗) ∩ Π1(ω

∗), y0). The
updated public information is F1(ω∗) = {ω′ ∈ F0(ω∗) : dP(F0(ω∗) ∩ Π1(ω

′), y0) = y1}.
Note that from Lemma 1, the announcement is unique, hence F1(ω∗) is well-defined.
Trader i’s new private information is F1(ω∗) ∩ Πi(ω

∗).
Trader 2 is next to make a public announcement and her private information is

F1(ω∗) ∩ Π2(ω
∗). At t2, she announces y2 = dP(F1(ω∗) ∩ Π2(ω

∗), y1) and the updated
public information is F2(ω∗) = {ω′ ∈ F1(ω∗) : dP(F1(ω∗) ∩ Π2(ω

′), y1) = y2}. Trader
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3 updates her private information to F2(ω∗) ∩ Π3(ω
∗), makes an announcement and

the process goes on. More generally, player ak = i at time tk has private information
F = Fk−1(ω∗) ∩ Πi(ω

∗) and announces yk = dP(F, yk−1).
Let E = {Fk(ω)∩Πak(ω)}k≥0,ω∈Ω be the collection of all events on which the traders

update their beliefs given that it is their turn to make an announcement. We say that
ΓM is regular if P is regular with respect to E .

4.1 Information aggregation

Our first main result is to fully characterize information aggregation in an environment
with myopic and ambiguity averse traders.

Theorem 1. Fix security X, information structure Π and continuous strictly proper
scoring rule s. Information aggregates for any regular ΓM(Ω, I,Π, X,P , y0, y, y, s) if and
only if X is strongly separable.

To provide some intuition, we describe briefly the steps of the proof. We first show
that the public (and therefore private) information is no longer updated after some time
t. This is a direct consequence of the finiteness of the state space so that all possible
states are within a common knowledge event F .

Second, traders agree on the announcement and they stop updating it. If Dynamic
Consistency was satisfied, as it is the case with EU and Bayesian updating, this step
would be straightforward. Since Trader i optimally announces yi in each of her partition
cells, irrespective of the previous announcement, Dynamic Consistency and the law of
iterated expectations imply that it is optimal to announce yi if her information was just
F . Given that this is true for all traders, common priors imply that their announcements
must coincide.

However, with MEU preferences and prior-by-prior updating, Dynamic Consistency
is violated and there is no longer separability across states as a different belief might
be picked at each partition cell. Hence, we cannot apply the law of iterated expecta-
tions.27 Moreover, the myopic prediction depends not only on the private information,
as in the EU case, but also on the previous trader’s prediction. Since there are many
possible myopic predictions, it could be the case that traders engage in a never-ending
cycle of revised predictions, even though their private information does not change. We
show that this does not occur because a monotonicity property of the scoring rule and
ambiguity aversion imply that Trader i will want to announce as close as possible to
the previous announcement in order to minimize the worst-case scenario. Moreover, the
set of all myopic announcements is fixed given F and do not depend on the previous
announcement. We therefore have only two cases. First, there is an announcement that
is common to all traders. Once a trader makes this announcement, everyone else will

27See Galanis (2021) for a discussion of Dynamic Consistency in a general framework with multiple
beliefs and convex preferences.
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repeat it so there will be agreement. Second, two traders disagree so much that i’s max-
imum myopic prediction, according to her posterior beliefs, is lower than j’s minimum
myopic prediction, according to her posterior beliefs. But if this is true for all partition
cells, it will also be true when conditioning on F , which is impossible because there is
at least one common prior. Effectively, this is a generalization of the result of Aumann
(1976) for MEU preferences; that is, ‘we cannot agree to disagree too much.’28

Finally, suppose that all traders agree on the prediction, which is the expected value
of the security for some posterior for all states in F . Then, the definition of strong
separability implies that this can only happen if there is no uncertainty about the value
of the security. That is, all states in F prescribe the same value for the security, which
is then equal to the common prediction and there is information aggregation.

5 Strategic Traders

Consider a game ΓS(Ω, I,Π, X,P , y0, y, y, s, β), where I is the set of n players, s is a
strictly proper scoring rule, y0 is the market maker’s initial announcement at time t0,
[y, y] is the set of possible announcements that a player can make, and β is the common
discount rate.

Let Hk = (y1, . . . , yk) be a history of announcements up to time tk, and H0 be
the empty history. Given any two histories Hk = (y1, ..., yk) and H l = (y′1, ..., y

′
l), let

(Hk, H l) be their concatenation. Although traders have multiple priors over Ω, a mixed
strategy consists of randomizing using a unique probability distribution. Player i trades
at periods ti+nk, k ∈ N, hence ai+nk = i. Her mixed strategy at time tk is a measurable
function σi,k : Πi × [y, y]k−1 × [0, 1] −→ [y, y]. It specifies an announcement yk given
the element of her partition, the history of announcements (y1, . . . , yk−1) up to time
tk, and the realization of random variable ιk ∈ [0, 1], which is drawn from the uniform
distribution. These draws are independent of each other and of the true state ω. The full
state is ϕ = (ω, ι1, ι2, . . .) and describes the initial uncertainty and the randomizations
of the players. Let Φ = Ω × [0, 1]N be the full state space. Player i’s strategy, denoted
σi, is a set of strategies at all times where it is her turn to make an announcement. Let
σ = (σ1, . . . , σn) be a profile of strategies.

A profile of strategies σ and a full state ϕ determine a sequence of predictions on-
path, which we denote y1(σ, ϕ), y2(σ, ϕ), . . .. Let Hk(σ, ϕ) = (y1(σ, ϕ), . . . , yk(σ, ϕ)) be
the history at tk generated by σ and ϕ on-path. Given a history Hk−1, which may
not be on-path, let yk−1+m(σ, ϕ|Hk−1) be the announcement at time tk−1+m if traders
play according to strategy profile σ and full state ϕ, from tk onwards, where m ≥ 0.
We denote by Hk−1+m(σ, ϕ|Hk−1) =

(
Hk−1, yk(σ, ϕ|Hk−1), . . . , yk−1+m(σ, ϕ|Hk−1)

)
the

history that is generated by these announcements.

28In an environment with ambiguity aversion, several papers extend the no trade theorems of Aumann
(1976), such as Dominiak and Lefort (2013, 2015), Carvajal and Correia-da Silva (2010) and Kajii and
Ui (2005, 2009), whereas Condie and Ganguli (2011) show the existence and robustness of partially-
revealing REE.
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Let ω(ϕ) and ιk(ϕ) be the first and (k+1)-th components of full state ϕ = (ω, ι1, . . .),
respectively. At time tk, Trader i knows component ιl(ϕ), which denotes the realization
of the random variable at tl, if al = i and l ≤ k. Her private information at time tk
and state ϕ is Πk

i (ϕ) = Πi(ω(ϕ)) × [0, 1]k
⋂
[ϕ′ : ιl(ϕ

′) = ιl(ϕ) for all l ≤ k with al = i].
Trader i’s information set at decision node (Hk−1, ϕ) is denoted I(Hk−1, ϕ) = Πk

i (ϕ).
Let I k

i be the collection of all information sets for i at time tk, and I be the collection
of all information sets.

The public information revealed at time tk+m, m ≥ 0, after history Hk and given
that traders play from tk+1 according to σ at full state ϕ is

Fk+m(σ, ϕ|Hk) = {ϕ′ ∈ Φ : Hk+m(σ, ϕ|Hk) =
(
yk+1(σ, ϕ

′|Hk), . . . , yk+m(σ, ϕ
′|Hk)

)
}.

If k = 0, then we denote by Fm(σ, ϕ|H0) = Fk+m(σ, ϕ) the public information at tm
that is revealed when everyone plays on-path.

Player ak+m = i, who makes an announcement at tk+m, can combine the public
information Fk+m(σ, ϕ|Hk) with her private information Πk+m

i (ϕ) ⊆ Φ in order to form
her updated private information. We denote the player’s updated private information
given strategy σ, state ϕ and history Hk, by

Fk+m
i (σ, ϕ|Hk) = Πk+m

i (ϕ)
⋂

Fk+m(σ, ϕ|Hk).

A system of beliefs is a collection of compact and convex sets of beliefs, one for each
information set.

Definition 4. A system of beliefs is a tuple P = {P(I)}I∈I such that each P(I) is
compact and convex.

To save on notation, we denote the beliefs P(I(Hk−1, ϕ)) of agent i who announces at
tk and information set I(Hk−1, ϕ) as P(Hk−1, ϕ).29

We now define the continuation payoff of player ak at decision node (Hk−1, ϕ). Note
that we define this payoff also in nodes that are not reached given strategy profile σ.

Definition 5. The continuation payoff of player ak = i at time tk and state ϕ, given
strategy profile σ, history Hk−1 and system of beliefs P is

Vi(H
k−1, ϕ, σ,P) =

min
p∈P(Hk−1,ϕ)

Ep

[
∞∑

m=0

βnm

(
s
(
yk+nm(σ, ϕ|Hk−1), X(ϕ)

)
− s

(
yk+nm−1(σ, ϕ|Hk−1), X(ϕ)

))]
.

The expectation is taken over Φ and we set X(ϕ) = X(ω(ϕ)), where ω(ϕ) ∈ Ω is
the first component of ϕ. To save on notation, we sometimes denote Vi with V as it is
clear in each time tk who is making the announcement. The only exception is at time t0,
where only the market maker has made an announcement and all traders have received
their private information. In that case, we denote i’s ex-ante payoff as Vi(H

0, ϕ, σ,P).

29If k = 0, then we are at the initial time t0 so that a0 denotes each i ∈ I and P(H0, ϕ) = P.
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5.1 Revision-Proof equilibrium

In this section, we define the notion of a Revision-Proof equilibrium and use it to show
that strongly separable securities characterize information aggregation. An issue that
arises in incomplete information games with ambiguity averse players is that their pref-
erences may not be dynamically consistent. This means that an ex-ante optimal plan
may be considered suboptimal by the same player at a subsequent period, therefore,
choosing not to follow it.30

One way of solving the issue of dynamic inconsistency is by imposing a solution
concept similar to the consistent planning of Strotz (1955), which is a refinement of
backward induction.31 Effectively, the decision maker takes into account the constraint
that her future selves might have different preferences and may not follow through a
plan that is optimal now. Since in our environment there are infinitely many periods,
we cannot impose backward induction so the generalization would be to check for one-
shot deviations.

Before formalizing the notion of consistent planning, we define consistency, which
imposes prior-by-prior updating at all decision nodes whenever possible.32

Definition 6. Pair (σ,P) is consistent if, for any full state ϕ ∈ Φ, history Hk, k ≥ 0
and player ak = i,

(i) P(Hk, ϕ) is regular with respect to F = Fk+n
i (σ, ϕ|Hk),

(ii) If
⋃

p∈P(Hk,ϕ)

Supp(p)
⋂

F ̸= ∅, then P(Hk+n(σ, ϕ|Hk), ϕ) is the prior-by-prior up-

dating of P(Hk, ϕ) given F .33

At decision node (Hk, ϕ), the beliefs of player ak = i are P(Hk, ϕ). Given that
everyone plays according to σ and ϕ for one round of n announcements, i’s private

30Pahlke (2022) studies games with incomplete information and MEU preferences, finitely many
actions and periods. She shows the existence of a Sequential equilibrium with rectangular priors (Epstein
and Schneider (2003)), thus ensuring Dynamic Consistency. In the Smooth Ambiguity model, Hanany
et al. (2020) show the existence of a Sequential equilibrium in a setting with finite actions and periods,
using the smooth rule (Hanany and Klibanoff (2007, 2009)). Few other papers study equilibrium
notions in general dynamic games under ambiguity, such as Eichberger et al. (2019) and Battigalli et al.
(2019). Ellis (2018) argues that in games with incomplete information and MEU preferences that satisfy
Dynamic Consistency, consequentialism and a common set of priors P, players act as if they have EU
preferences. Pahlke (2022) avoids such a criticism by allowing for different priors.

31Consistent planning was further developed by Peleg and Yaari (1973) and Goldman (1980). Sinis-
calchi (2011) provides behavioral foundations in a single-agent setting. Specific applications with MEU
preferences, prior-by-prior updating and some form of consistent planning are provided, among oth-
ers, by Bose and Daripa (2009), Bose and Renou (2014), Kellner and Le Quement (2017, 2018) and
Beauchêne et al. (2019).

32Consistency adapts the standard definition of consistency in a Perfect Bayesian Equilibrium (Fu-
denberg and Tirole (1991)). Bonanno (2013, 2016) examines the relationship between Perfect Bayesian
Equilibrium and Sequential Equilibrium, by providing a qualitative notion of AGM-consistency, which
is based on the theory of belief revision introduced by Alchourrón et al. (1985).

33If k = 0, then we are at the initial time t0 so that a0 denotes each i ∈ I and P(H0, ϕ) = P.
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information is updated using new information F = Fk+n
i (σ, ϕ|Hk). Consistency requires

that beliefs P(Hk, ϕ) are regular with respect to F and that there is prior-by-prior
updating whenever possible.

Definition 7. Consistent pair (σ∗,P) is a Consistent-Planning equilibrium if there is
no decision node (Hk−1, ϕ), player ak = i and alternative strategy σ = (σi, σ

∗
−i) with

σi,k′ = σ∗
i,k′ for all k′ ̸= k, such that

V (Hk−1, ϕ, σ,P) > V (Hk−1, ϕ, σ∗,P).

This solution concept (for infinitely many periods) has not yet been studied in
games with incomplete information and ambiguity averse preferences. However, in com-
plete information games with time-inconsistent preferences, Asheim (1997) and Ales and
Sleet (2014) argue against such a solution concept and provide a refinement, Revision-
Proofness, which we adapt in our setting.

A consistent pair (σ∗,P) is a Revision-Proof equilibrium if it is immune to any
‘collective’ deviations by a trader and her future selves, where every future self evaluates
the deviation given her updated beliefs and preferences. This latter condition is crucial
because of dynamic inconsistency. Even if Trader i considers a deviation profitable at
time tk, it does not mean that her future self, after r rounds, will also find it profitable
at tk+nr.

Definition 8. Consistent pair (σ∗,P) is a Revision-Proof equilibrium if there is no
decision node (Hk−1(ϕ, σ∗), ϕ), player ak = i and alternative strategy σ = (σi, σ

∗
−i) such

that for all r ≥ 0 and Hnr,

V ((Hk−1(ϕ, σ∗), Hnr), ϕ, σ,P) ≥ V ((Hk−1(ϕ, σ∗), Hnr), ϕ, σ∗,P)

with the inequality strict for at least one Hnr.

Our concept has three differences from that of Asheim (1997) and Ales and Sleet
(2014). First, they only consider complete information games, hence they do not specify
how beliefs are updated. Second, they consider deviations from any set of subsequent
players, whereas we only check deviations of a single player and her future selves. Third,
they check deviations from any history, not just the one that is followed on-path.

Note that, as is the case with complete information games, Revision-Proof equilibria
may not always exist. In the Supplementary Appendix, we show that Revision-Proof
equilibria exist when the game is continuous at infinity. A game is continuous at infinity
if strategies that only differ in the distant future have negligible impact on the utility of
any player. As with Ostrovsky (2012), this is achieved by shortening the time period tk
as k → ∞, so that the discount factor decreases.

Our main result in the strategic environment is that strongly separable securities
aggregate information in all Revision-Proof equilibria.

Theorem 2. Fix information structure Π and bounds [y, y].
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(i) If security X is strongly separable under Π, then for any ΓS and any Revision-Proof
equilibrium, information aggregates.

(ii) If security X is not strongly separable under Π, then there exist game ΓS and a
Revision-Proof equilibrium such that information does not aggregate.

6 Experiment

Our experimental design focused on three dimensions. The first dimension was whether
beliefs about events were precise to reflect EU preferences or imprecise to reflect MEU
preferences. The second dimension related to the type of security that was traded:
separable securities, such as Arrow-Debreu securities,34 or strongly separable securities.
The third dimension related to the initial price of the security set by the uninformed
market maker: we allowed for two initial prices. In summary, we applied a 2 × 2 × 2
experimental design to examine the impact on information aggregation of the market
type, security type and initial price.

6.1 Experimental design

Initially, subjects received 6,000 Experimental Currency Units (ECUs) as a show-up
fee. The conversion was 2,000 ECUs for e1. There were 3 parts in the experimental
instructions. In the first part, we measured subjects’ risk attitudes. Specifically, we
used a variant of the Eckel-Grossman test (Eckel and Grossman (2002, 2008)), where
subjects were presented with five gambles of varying riskiness and were required to select
the one they prefer. In the second part, the game play took place. The instructions here
accommodated the underlying assumptions about the nature of beliefs, type of security
and initial price. The second part was the only part that differed across the treatments
conducted. In the third part, subjects were asked to complete a questionnaire about their
demographic characteristics. With the conclusion of the experimental session, subjects
were paid in cash by the experimenter. The experimental instructions are included in
the Supplementary Appendix.

In the game-play stage, subjects were recruited to play the role of traders in prediction
markets forecasting the value of a stock.35 The traders’ forecast could take any integer
value from 0 to 100 inclusive. The stock value was a binary outcome taking either the
value of high (i.e. 100) or low (i.e. 0). To determine the stock value and, thereby, the
payoffs of the traders in the sequential trading (see below for more details), a random
draw took place in the beginning of the round. Specifically, a colored ball was drawn

34See also Healy et al. (2010), Choo, Kaplan, and Zultan (2019, 2022) and Page and Siemroth (2021)
for laboratory experiments that study information aggregation with Arrow-Debreu securities.

35In lieu of the word ‘security,’ in the experimental instructions, we used the word ‘stock,’ which is
contextually more familiar to most individuals.
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from a fictional urn containing 90 colored balls. The colors of the balls in the urn
{red, green, blue} represented states that mapped onto a high or low stock value. Prior
to the start of trading, subjects were provided with information on the color composition
of the urn, the mapping of colors to a high or low stock value, a private signal about
the color of the drawn ball, and the initial price of the stock. The information on the
color composition of the urn reflected the market type (unique priors and EU preferences
or multiple priors and MEU preferences), whereas the mapping of colors to a high or
low stock value reflected the available type of traded securities (separable or strongly
separable). The information structure, presented to subjects in a tabular form as shown
in Table 2, was fixed and common knowledge in all treatments. This information was
explicitly discussed in the instructions.36 Furthermore, before trading, subjects were
also informed of the initial stock price (0 or 50).

Table 2: Information Structure

Private Information

Ball Drawn Trader 1 Trader 2

Red Not Blue Not Green

Green Not Blue Green

Blue Blue Not Green

Notes: The table displays the state-conditional signals that were provided to the two traders. Even

though the structure was common knowledge, the trader’s signal in each round was private.

In the treatments with unique priors, subjects were given the exact composition of
the urn. Specifically, they were told that there are 90 balls in the urn, where 30 of those
are red, 30 are green and 30 are blue. This information allowed subjects to formulate
precise beliefs about events and have EU preferences.37 Henceforth, this market is
referred to as EU. In the treatments with multiple priors, subjects were not given the
exact composition of the urn. In the treatment with multiple priors and separable
securities, subjects were informed that the urn contains 90 balls, where between 0 and
30 are red balls, between 20 and 70 are green balls, and between 20 and 70 are blue
balls. This setting mimics the example in the Introduction (and Section 2), where one
belief puts probability 0 on the first state, which we call ‘red’ in the experiment. In the

36For instance, subjects were told that “if the drawn ball is red, Trader 1 will be informed that the
drawn ball is not blue, whereas Trader 2 will be informed that the drawn ball is not green.” Analogous
descriptions were provided for the other colors.

37It should be noted that simply providing explicit information about the composition of the urn does
not guarantee that subjects have EU preferences. Rather, the assumption that individuals have EU
preferences, in this setting, is a joint hypothesis of the alternative tests that are being run. We thank
an anonymous referee for pointing out the necessity of this clarification.
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treatment with multiple priors and strongly separable securities, subjects were informed
that the urn contains 90 balls, where between 1 and 30 are red balls, between 20 and 69
are green balls, and between 20 and 69 are blue balls. Notice that, here, we change the
composition so that no belief puts zero probability on the red state. The reason is that
since our theory predicts that there will be information aggregation on the red state, we
need to apply prior-by-prior updating when a red ball is drawn and, therefore, all beliefs
must assign strictly positive probability on red. Providing partial information about the
composition of the urn enables ambiguity averse subjects to formulate multiple priors
that give rise to the MEU preferences. Henceforth, this market is referred to as Amb.

The second treated variable was the type of the security. In the case of separable
securities, we informed subjects that if the red ball was drawn, then, the stock value
would be high (i.e. 100), otherwise the stock value would be low (i.e. 0). Hence, this
is a standard Arrow-Debreu security. In the case of strongly separable securities, we
informed subjects that if the red or green ball was drawn, then, the stock value would
be high (i.e. 100), otherwise the stock value would be low (i.e. 0). Note that the security
is constant on the partition cells of Trader 1. From Proposition 2, this is a sufficient
condition for the security to be strongly separable.

The initial price of the security was another treated variable. In the myopic setting,
theoretically, the two security types exhibit the same information aggregation, in every
single state, for all initial prices with the exception of 0; at the 0 initial price, the
information aggregation should still be the same across the two security types in the green
and blue states, but worse in the red state for the separable security with ambiguity.38,39

We thus chose to investigate experimentally information aggregation at the initial price
of 0 as well as at an initial price where the two security types perform the same. We
chose 50 as the midpoint between 0 and 100.

Subjects were asked to take part in 12 rounds of prediction markets. In each round,
traders made sequential predictions about the stock value. Specifically, Trader 1 would
make a prediction in the first trading period, then Trader 2 would provide her prediction
in the second trading period, then Trader 1, and so on and so forth. Although the number
of rounds was common knowledge, the number of trading periods within each round was
unknown. However, subjects were informed that there was a 95% chance of having an
extra trading period within a given round.40

The draws for the number of trading periods within each round were done ex ante to
ensure that all treatments would have the same number of trading periods. The states
were also drawn ex ante and hard-coded. We did so to enable a consistent comparison

38In general, a security that does not aggregate information in the myopic case would be difficult to
aggregate information in the strategic case.

39Note that the failure of information aggregation in the Amb setting with a separable security at the
0 initial price is special to the particular example we use. In general, information aggregation can fail
at multiple initial prices.

40This assumption is similar to that made in Fréchette and Yuksel (2017), Ioannou and Romero
(2014), Vespa (2019) and Ioannou et al. (2023). It is necessary in order to simulate the infinitely-
many-periods assumption of the theoretical setting and to avoid having subjects implement backward
induction reasoning.
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across treatments without invoking variability in learning effects. The actual numbers of
trading periods in each round were {4,16,17,12,9,15,12,8,17,16,21,5}. Thus, the round
with the highest number of trading periods was round #11 with 21 trading periods, and
the round with the lowest number was round #1 with 4 trading periods. The realized
states were {Red,Blue,Blue,Blue,Red,Blue,Red,Green,Red,Green,Blue,Blue}.41 The real-
ized color of the ball was revealed to the subjects at the end of the respective round.
Recall that depending on the type of security, the green color, for instance, could reflect
a low stock value (in the case of separable securities) or a high stock value (in the case
of strongly separable securities). Furthermore, the trading pairs were fixed for the du-
ration of the round, but new pairs were formed in every new round. This information
was common knowledge.

At the beginning of each round, traders were given an endowment of 1,500 ECUs.
Payoffs were calculated based on the MSR at the end of each trading period. Thus, the
trader’s payoff was a function of (a) the stock value (high or low), (b) the trader’s own
prediction, and (c) the previous trader’s reported prediction.

• When the value of the stock was high (i.e. 100), the trader’s payoff was given by
the formula:

0.01[(100− previous trader’s reported prediction)2 − (100− trader’s prediction)2].

• When the value of the stock was low (i.e. 0), the trader’s payoff was calculated by
the formula:

0.01[(previous trader’s reported prediction)2 − (trader’s prediction)2].

The round payoff was then the summation of all the payoffs of the trading periods in
the round. Crucially, the round payoff was determined at the end of the round when
the stock value was revealed to the traders. It was possible that based on the payoffs
of a subject’s predictions in the round that her funds would go down to zero or even
negative.42 In that case, we would zero their round payoff. Specifically, subjects were
told that “if your round payoff is a negative number, then we will zero your round payoff
for that round. In the new round, you will be given once again your starting 1,500
ECUs.” The final payoff of a trader was the summation of all the round payoffs of the
trader in the 12 rounds played. To ensure that subjects understood the environment,
before the actual game play, they had to complete a quiz with 15 questions.

The experimental sessions took place in February of 2019 at the Laboratoire d’Économie
Expérimentale de Paris (LEEP). We conducted two sessions per treatment. The 288 sub-
jects were recruited from the database of the Université Paris 1 Panthéon - Sorbonne. We

41The respective signals (i, j), where i is the signal of Trader 1 and j is the signal of Trader 2,
were {(Not Blue, Not Green),(Blue, Not Green),(Blue, Not Green),(Blue, Not Green),(Not Blue, Not
Green),(Blue, Not Green),(Not Blue, Not Green),(Not Blue, Green),(Not Blue, Not Green),(Not Blue,
Green),(Blue, Not Green),(Blue, Not Green)}.

42In the actual experiments, no subject lost the entire endowment of the round.
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sent emails publicizing the experiment; interested individuals replied by email. We had
participants from a variety of majors, such as business, computer science, economics,
history, political science, engineering, biology, finance, art, physics and mathematics.
Participants were allowed to participate in only one session. The sessions lasted around
an hour and a half. Average earnings per participant were e12.90. The experimental
codes were programmed using the experimental software z-Tree (Fischbacher (2007)).
Some general characteristics of the sessions are shown in Table 3. Note that each treat-
ment is denoted by an acronym. In particular, the acronym (market type, security type,
initial price) consists of the market type (EU for the market with EU preferences or Amb
for the market with MEU preferences), the security type (S for separable securities or
StS for strongly separable securities) and the initial price (0 or 50).

Table 3: Characteristics of the Experimental Sessions

Initial Price is 0

# of Subj. # of Ses. Market Type Security Type Acronym

36 2 EU Separable EUS0

36 2 Amb Separable AmbS0

36 2 EU Str. Separable EUStS0

36 2 Amb Str. Separable AmbStS0

Initial Price is 50

# of Subj. # of Ses. Market Type Security Type Acronym

36 2 EU Separable EUS50

36 2 Amb Separable AmbS50

36 2 EU Str. Separable EUStS50

36 2 Amb Str. Separable AmbStS50

Notes: In the first column, we provide the total number of participants in each treatment. In the second

column, we provide the number of sessions per treatment. In every session, we had 18 participants.

Treatments differed in the market type, the type of securities traded, and the initial price. The acronyms

in the last column consist of the market type (EU for the market with EU preferences or Amb for the

market with MEU preferences), the security type (S for separable securities or StS for strongly separable

securities) and the initial price (0 or 50).
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6.2 General hypotheses

Recall that we aim to investigate the impact on information aggregation of three di-
mensions. The first is the market type (unique priors and EU preferences or multiple
priors and MEU preferences). The second relates to the type of security that is traded
(separable or strongly separable). The third relates to the initial price announcement of
the uninformed market maker (0 or 50).

To measure the degree of information aggregation in a market, we use the intrinsic
value of the security as a benchmark. This is the most natural candidate to serve as
a benchmark for two main reasons. First, by construction, the intrinsic value of the
security is always revealed if the private information of the two traders is aggregated.
Second, Ostrovsky (2012) showed that in any environment with EU preferences, the
predictions of Bayesian Traders always converge to the intrinsic value for separable
securities. The same holds true in environments with MEU preferences and strongly
separable securities (Theorems 1 and 2). We therefore use the intrinsic value of the
security as our baseline, and measure its absolute difference in distance from the final
prediction.43 We call this measure, for brevity, AD (i.e. absolute difference). We say
that, given a state (i.e. the color of the drawn ball in the experiment), information
aggregation in market B is at least as good as that in market A, if the AD in market A
is greater or equal to that in market B.

We now formulate our hypotheses. Hypothesis 1 extends and interprets the main
result of Ostrovsky (2012) to an environment with ambiguity aversion assuming an initial
price of 0.

Hypothesis 1. Assuming an initial price of 0 and separable securities, information
aggregation in the Amb market is at least as good as that in the EU market regardless of
the color of the drawn ball.

Hypothesis 2 is a direct implication of Theorems 1 and 2, which show that strongly
separable securities always aggregate information, in both EU and Amb markets with
myopic or strategic traders. Here, it is formulated assuming an initial price of 0.

Hypothesis 2. Assuming an initial price of 0 and strongly separable securities, infor-
mation aggregation in the Amb market is at least as good as that in the EU market
regardless of the color of the drawn ball.

We now test the degree of information aggregation of the two security types when
the initial price is 50.

Hypothesis 3. Assuming an initial price of 50 and separable securities, information
aggregation in the Amb market is at least as good as that in the EU market regardless of
the color of the drawn ball.

43Our criterion is one of many. For example, we could have used the last predictions of both traders,
instead of the final prediction, in our distance measure. The results are almost identical. However, to
maintain consistency between the theory and the statistical analysis, we chose to measure the distance
between the intrinsic value of the security and the final prediction.

30



Hypothesis 4. Assuming an initial price of 50 and strongly separable securities, in-
formation aggregation in the Amb market is at least as good as that in the EU market
regardless of the color of the drawn ball.

The next pair of hypotheses investigates whether separable and strongly separable
securities, respectively, are prone to manipulation by the uninformed market maker.
Note that we again interpret and extend the main result of Ostrovsky (2012) to an
environment with ambiguity aversion. Specifically, we test whether, holding the Amb
market fixed, changing the initial price from 0 to 50 has any impact on the degree of
information aggregation of each security type.

Hypothesis 5. In the Amb market with separable securities and for any color of the
drawn ball, the information aggregation under an initial price of 0 is at least as good as
that under an initial price of 50.

Hypothesis 6. In the Amb market with strongly separable securities and for any color
of the drawn ball, the information aggregation under an initial price of 0 is at least as
good as that under an initial price of 50.

6.3 Results

6.3.1 Descriptive statistics

We report next some descriptive statistics about the absolute difference (AD) in distance
of the final prediction from the intrinsic value of the security. On one hand, when the
stock value is low (i.e. in the green and blue states of the separable securities, and in
the blue state of the strongly separable securities), the median AD also indicates the
median last reported prediction. On the other hand, when the stock value is high (i.e.
in the red state of the separable securities, and in the red or green states of the strongly
separable securities), one needs to subtract the median AD from 100 to get the median
last reported prediction.

In Figure 1, we display the box plots of the ADs across the market types when the
initial price is 0, and in Figure 2, we display the box plots when the initial price is 50.
It is evident from the box plots that there was a lot of variability in the reports of the
subjects. This could be attributed to the nature of the game which allows for strategic
behavior, and thus results in noisier predictions.

Looking at the median ADs, typically the red state had the largest value, then the
green state and, finally, the blue state. For instance, in the treatment EUS0, the median
AD for the red state was 30 (i.e. the median last reported prediction was 70), the median
AD for the green state was 15, and for the blue state it was 10. The last two values
were also the median last reported predictions. There was also one treatment where
the median AD of the red state was equal to that of the green state; specifically, in
the treatment AmbStS0, the red and green states had a median AD of 20. In another
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Figure 1: Box Plots for Initial Price of 0

Notes: We display the box plots of the ADs across the market and security types conditional on the

realized state (red, green, blue) when the initial price is 0.

treatment, EUStS0, the green state and the blue state both had a median AD of 5. The
highest median AD was 50 in treatments AmbS0 and AmbS50 for the red states. The
fact that subjects consistently had trouble aggregating information with the red state
should not be surprising given that it was the only state that did not explicitly reveal
the color of the drawn ball to any trader, in contrast to the green and blue states.

6.3.2 Information aggregation

To investigate the impact on information aggregation of the treated variables, we perform
the following statistical analysis. In particular, we use the Mann-Whitney test, where
the H0 states that the AD in the EU market is greater or equal to the AD in the Amb
market when fixing the realized state. Thus, rejecting the H0 signifies that information
aggregation is significantly worse in the Amb market relative to that in the EU market.
The p-values are displayed in Table 4.

The first hypothesis dealt with the case of separable securities and initial price of 0.
The first result is formalized next.

Result 1. For an initial price of 0 and separable securities, information aggregation in
the Amb market is at least as good as that in the EU market when the drawn balls are
green or blue. When the drawn ball is red, information aggregation in the Amb market
is significantly worse.
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Figure 2: Box Plots for Initial Price of 50
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Notes: We display the box plots of the ADs across the market and security types conditional on the

realized state (red, green, blue) when the initial price is 50.

Support. Contrary to our hypothesis, we find that in the red state, information ag-
gregation in the Amb market is significantly worse (p-value is 0.001). Therefore, the H0

can be rejected at the conventional 5% level of statistical significance in the red state.

Next, we investigate the hypothesis of strongly separable securities when the initial
price is 0. Our second result sheds light to the strength of the strong separability
condition.

Result 2. For an initial price of 0 and strongly separable securities, information aggre-
gation in the Amb market is at least as good as that in the EU market regardless of the
color of the drawn ball.

Support. The p-values in the red, green and blue states are 0.107, 0.133 and 0.195,
respectively. We thus fail to reject the H0.

Hypotheses 3 and 4 investigate the effect on information aggregation of separable
and strongly separable securities, respectively, but this time for an initial price of 50.

Result 3. For an initial price of 50 and separable securities, information aggregation
in the Amb market is at least as good as that in the EU market regardless of the color
of the drawn ball.

Support. We fail to reject the H0 as the p-values in the red, green and blue states are
0.393, 0.342 and 0.265, respectively.
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Table 4: Mann-Whitney Tests on Information Aggregation

Panel A
Initial Price: 0

Separable Strongly Separable

Alternative hypothesis: ADi < ADj

p-values

Red State
EU vs. Amb 0.001 0.107

Green State
EU vs. Amb 0.479 0.133

Blue State
EU vs. Amb 0.447 0.195

Panel B
Initial Price: 50

Separable Strongly Separable

Alternative hypothesis: ADi < ADj

p-values

Red State
EU vs. Amb 0.393 0.316

Green State
EU vs. Amb 0.342 0.168

Blue State
EU vs. Amb 0.265 0.262

Notes: We utilize the Mann-Whitney tests to determine whether the AD of the security in the EU

market is greater or equal to its AD in the Amb market when fixing the realized state. In Panel A, we

report the p-values of the comparisons in the ADs when the initial price is 0. In Panel B, we report the

p-values of the comparisons in the ADs when the initial price is 50.

Result 4. For an initial price of 50 and strongly separable securities, information ag-
gregation in the Amb market is at least as good as that in the EU market regardless of
the color of the drawn ball.

Support. The p-values in the red, green and blue states are 0.316, 0.168 and 0.262,
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respectively. Hence, we fail to reject the H0.

Hypotheses 5 and 6 test the degree of information aggregation in an environment
with ambiguity for separable and strongly separable securities, respectively, when the
initial price changes. For the analysis, we again use the Mann-Whitney test, where
the H0 states that, in the Amb market when fixing the realized state, the AD of the
security when the initial price is 50 is greater or equal to the AD of the security when
the initial price is 0. Therefore, rejecting in this context the H0 means that information
aggregation is significantly worse under an initial price of 0.

Result 5. In the Amb market with separable securities, information aggregation under
an initial price of 0 is at least as good as that under an initial price of 50 in the red and
green states, but, in the blue state, information aggregation under an initial price of 0
is significantly worse.

Support. None of the p-values is statistically significant in the red and green states
(p-values are 0.143 and 0.195, respectively). However, in the blue state, the p-value is
0.068; thus, we reject the H0 at the 10% level of statistical significance in this state.

Result 6. In the Amb market with strongly separable securities, information aggregation
under an initial price of 0 is at least as good as that under an initial price of 50 regardless
of the color of the drawn ball.

Support. The p-values in the red, green and blue states are 0.111, 0.184 and 0.231,
respectively. We thus fail to reject the H0.

7 Concluding Remarks

In 1969, Clive W. J. Granger and John M. Bates established in their seminal study
that combining different forecasts was more accurate than trying to find the best one
(see Bates and Granger (1969)). Those discoveries, combined with the earlier work of
Friedrich Hayek, laid the foundations of prediction markets. Our primary purpose in
this study has been to investigate the information aggregation properties of prediction
markets with ambiguity-averse traders that have imprecise beliefs. Our motivation stems
from trying to understand when prediction (and, more generally, financial) markets are
successful in aggregating information.

We find theoretically that separable securities, which aggregate information in envi-
ronments with precise beliefs and EU preferences are no longer sufficient when beliefs
are imprecise. This implies that utilizing prediction markets to get a better prediction
for events that are hard to quantify might backfire as traders could converge to the
wrong price of the security. We introduce a new class of strongly separable securities,
and show that they aggregate information in an environment with ambiguity, irrespec-
tively of whether traders play strategically or not. Similar to Ostrovsky (2012), we study
information aggregation only for sufficiently high t without examining what happens to
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prices in the middle of the game where it is possible, in an equilibrium, to diverge widely
from the intrinsic value of the security.

We take our testable predictions to the laboratory where we simulate trading in pre-
diction markets between pairs of subjects. We find that in environments with imprecise
beliefs and ambiguity-averse individuals, separable securities do not aggregate informa-
tion and are prone to manipulation by the market maker’s initial price announcement.
In sharp contrast, in the same environments, strongly separable securities do aggregate
information and are resilient to such manipulation. The results for strongly separable
securities are in line with the theoretical predictions.

Our emphasis and concern for dynamic prediction markets with ambiguity aversion
is not only partisan, but also culminates in a profound result for asset markets in gen-
eral. Proposition 3 states that there is no way to build a securitization scheme that will
ensure information revelation for all information structures; that is, given that strongly
separable securities are both sufficient and necessary for information aggregation, we
show that there exists no security that can deliver information aggregation for all infor-
mation structures. This is a negative result not only for the ability of prediction markets
to aggregate information with ambiguity, but of financial markets in general.

The paper leaves several open questions for future research. First, to alleviate the
negative result of Proposition 3, a natural next question is whether a subset of strongly
separable securities can deliver information aggregation for large classes of information
structures that are of interest. Second, given that a fixed security in prediction mar-
kets cannot ensure information aggregation for all information structures, is there a
different market design that can? Finally, a third direction for future research is to
examine whether strongly separable securities aggregate information under ambiguity
in the widely used model of Kyle (1985), which includes noise traders and competitive
market makers. In that model, the question of information aggregation is intertwined
with the question of information revelation so that even with one informed trader, it is
not straightforward that her information will be eventually revealed.44

44Ostrovsky (2012) characterizes separable securities in that framework as well, whereas Lambert
et al. (2018) extend it to informationally complex environments to show that, under some conditions,
prices in large markets aggregate all available information. Information aggregation has also been
studied in the context of other settings, such as elections (see Barelli et al. (2020), and Ekmekci and
Lauermann (2020)).
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A Proofs for the non-strategic environment

In this section, we present the proofs for the characterization of strongly separable se-
curities and the information aggregation in the non-strategic environment.

Proof of Lemma 1. Where convenient, we use the notation s(y)(.) ≡ s(y,X(.)). We first
show that argmax

y∈[y,y]
min
p∈P

Ep

[
s(y) − s(z)

]
does, in fact, exist. This is true because s is a

continuous function, therefore, min
p∈P

Ep

[
s(y)− s(z)

]
is upper semicontinuous (as infimum

of continuous functions) as a function of y. Since [y, y] is compact, a maximum exists

and the set argmax
y∈[y,y]

min
p∈P

Ep

[
s(y)− s(z)

]
is not empty.

Next, we define V to be the convex hull of {s(y)}y∈[y,y]. The set {s(y)}y∈[y,y] is
compact in Rl because s is continuous in y and [y, y] is compact, hence V is compact.
Consider the function G : P × V −→ R defined by G(p, v) = Ep[v− s(z)]. The function
is linear in p and affine in v. Moreover, it is continuous both in p and in v.

By Sion’s Minimax Theorem (Berge (1963), p. 210), there exists p∗ ∈ P and v∗ ∈ V
such that for all (p, v) ∈ P × V , Ep∗

[
v− s(z)

]
≤ Ep∗

[
v∗ − s(z)

]
≤ Ep

[
v∗ − s(z)

]
. Then,

we get that min
p∈P

max
v∈V

Ep

[
v − s(z)

]
= max

v∈V
min
p∈P

Ep

[
v − s(z)

]
and it is achieved at p = p∗,

v = v∗.
For a fixed p, as s is a strictly proper scoring rule, the unique maximizer of Ep

[
v −

s(z)
]
over V is s(Ep[X]) so that v∗ = s(Ep∗ [X]). Hence, we may conclude that

min
p∈P

max
y∈[y,y]

Ep

[
s(y) − s(z)

]
= max

y∈[y,y]
min
p∈P

Ep

[
s(y) − s(z)

]
and it is achieved at p = p∗,

y = Ep∗ [X]. This proves the second point.
We claim that y = Ep∗ [X] is a unique element of argmax

y∈[y,y]
min
p∈P

Ep

[
s(y,X(ω)) −

s(z,X(ω))
]
. To see that, let y′ ̸= Ep∗ [X]. Then,

min
p∈P

Ep

[
s(y′, X(ω))− s(z,X(ω))

]
≤ Ep∗

[
s(y′, X(ω))− s(z,X(ω))

]
<

Ep∗
[
s(Ep∗ [X], X(ω))− s(z,X(ω))

]
= max

y∈[y,y]
min
p∈P

Ep

[
s(y,X(ω))− s(z,X(ω))

]
.

Hence, the maximizer is unique.
For the third claim, note that Ep

[
s(z,X) − s(z,X)

]
= 0 for all p ∈ P , hence

max
y∈[y,y]

min
p∈P

Ep

[
s(y,X) − s(z,X)

]
≥ 0. As z = Ep[X] for some p ∈ P , we have that

p ∈ argmin
p∈P

max
y∈[y,y]

Ep

[
s(y,X)− s(z,X)

]
and y∗ = z.

Proof of Proposition 2. Suppose that X is not strongly separable for P and v. Then,
from Lemma 1, we have that for each ω ∈

⋃
p∈P

Supp(p) = E and for each i ∈ I, Ep[X(ω)−
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v|Πi(ω)] = 0 for some p ∈ P ignoring, without loss of generality, states ω′ for which
X(ω′) = v. Given that Supp(p) ⊆ E, it cannot be that for some Trader i, state ω ∈ E
and λ ∈ R, (X(ω′)− v)λ > 0 for all ω′ ∈ Πi(ω) ∩ E.

Conversely, suppose that for some v ∈ R and E ⊆ {ω ∈ Ω : X(ω) ̸= v}, for
any Trader i and state ω ∈ E, we have both (X(ω′) − v) > 0 and (X(ω′′) − v) < 0
for some ω′, ω′′ ∈ Πi(ω) ∩ E. Then, for each i there exists p′′ with Supp(p′′) = E
such that Ep′′ [X(ω) − v|Πi(ω)] = 0. To see this, let E1 = {ω′ ∈ Πi(ω) : X(ω′) >
v} with k1 elements and E2 = {ω′ ∈ Πi(ω) : X(ω′) < v} with k2 elements. Then,
k

∑
ω′∈E1

X(ω′)+ (1− k)
∑

ω′∈E2

X(ω′) is strictly above v for big enough k ∈ (0, 1) and strictly

below v for small enough k. From the Intermediate Value Theorem, for some k, we have
Ep′ [X(ω)−v] = 0, where p′ assigns k

k1
to each state ω′ ∈ E1 and

k
k2

to each state ω′ ∈ E2.
We can then extend p′ to a belief p′′ with full support on E such that its conditional
given Πi(ω) is p

′.
Collect all these beliefs p′′ for each i and ω ∈ E, letting P be their convex hull. Note

that P is regular with respect to each Πi. From the third result of Lemma 1, given
that the previous announcement is v, every trader at each state ω will also announce v.
Hence, X is not strongly separable for v and P , a contradiction.

Proof of Lemma 2. Given a value v ∈ R and a security X, let ΩX ̸=v = {ω ∈ Ω : X(ω) ̸=
v}. We use induction on the number of securities. For k = 1, take any v and any
event E ⊆ ΩX1 ̸=v. There are two cases. First, there exist ω, ω′ such that Π1(ω)

⋂
E and

Π1(ω
′)
⋂
E are non-empty and disjoint. Second, E ⊆ Π1(ω) for some ω. By construction,

at each state ω ∈ E, Trader 1 knows the value of security X1, hence we have that for all
ω′ ∈ Π1(ω) ∩ E, (X(ω′)− v)λ > 0 for some λ ∈ R. Using Proposition 2, X1 is strongly
separable. Note that in the first case, if v is strictly between X1(Π1(ω)) and X1(Π1(ω

′)),
there is a Trader i (in particular 1) who knows at state ω that the value of X1 is strictly
above v, and in some other state ω′ that the value is strictly below v. We will use this
fact as our induction hypothesis.

Suppose that Xk is strongly separable. We show that Xk+1 is also strongly separable.
Take any v and E ⊆ ΩXk ̸=v. There are two cases. First, there exist ω, ω′ such that⋂
i=1,...,k

Πi(ω)
⋂

E and
⋂

i=1,...,k

Πi(ω
′)
⋂
E are non-empty and disjoint. From the induction

hypothesis, if v is strictly between Xk(
⋂

i=1,...,k

Π1(ω)) and Xk(
⋂

i=1,...,k

Π1(ω
′)), there is a

Trader i = 1, . . . , k who knows at state ω that the value of Xk is strictly above v and a
possibly different Trader j = 1, . . . , k who knows in some other state ω′ that the value is
strictly below v. For any value v′ < v, i will still know at ω thatXk assigns a value higher
than v′, whereas for any value v′′ > v, Trader j will still know at ω′ that Xk assigns a
value lower than v′′. Hence, irrespective of whether v is between Xk(

⋂
i=1,...,k

Π1(ω)) and

Xk(
⋂

i=1,...,k

Π1(ω
′)), there is some Trader who knows at some state whether the value of

Xk is strictly below or above v.
By construction, when going from security Xk to security Xk+1 the ordering of states

38



is preserved. That is, if Xk(ω) < Xk(ω
′), then Xk+1(ω) < Xk+1(ω

′). The reason is that,
for each ω ∈ Ω, Xk assigns the same value to all states in

⋂
i=1,...,k

Πi(ω), whereas Xk+1

partitions
⋂

i=1,...,k

Πi(ω) using the elements of k+1’s partition and assigns different values

to each, respecting the order for states ω, ω′ such that Xk(ω) ̸= Xk(ω
′). This implies

that for any v, there is Trader i and state ω ∈ E such that i knows that the value of
Xk+1 is above v or a possibly different trader who knows that it is below v.

The second case is that E ⊆
⋂

i=1,...,k

Πi(ω) for some ω. By construction,Xk+1 partitions⋂
i=1,...,k

Πi(ω) using the elements of k + 1’s partition and assigns different values to each.

Moreover, given E, Trader k + 1 knows the value of Xk+1 at every state in E. If
v ∈ [min

ω∈E
Xk+1(ω),max

ω∈E
Xk+1(ω)], then Trader k + 1 knows whether the value of Xk+1 is

above or below v at some state in E. The same is true if v /∈ [min
ω∈E

Xk+1(ω),max
ω∈E

Xk+1(ω)].

We have shown that in all cases, for any v and any E ⊆ ΩXk ̸=v, there is a Trader i
who knows at some state ω ∈ E whether the value of Xk+1 is strictly below or strictly
above v. Hence, we have that for all ω′ ∈ Πi(ω) ∩ E, (X(ω′)− v)λ > 0 for some λ ∈ R.
Using Proposition 2, Xk+1 is strongly separable.

Proof of Corollary 1. Take any v and non-empty event E ⊆ {ω ∈ Ω : X(ω) ̸= v}. We
then have that there exist Trader i and state ω ∈ E such that Πi(ω) ∩ E ⊆ X−1(k) for
some k. By construction of E, k ̸= v. This implies that for some λ ∈ R, (X(ω′)−v)λ > 0
for all ω′ ∈ Πi(ω) ∩ E. Using Proposition 2, the security is strongly separable.

Proof of Proposition 3. Take any (non-constant) security X and consider the partition
X generated by its values: for each ω ∈ Ω, ω′ ∈ X (ω) if X(ω) = X(ω′). The partition X
has at least two partition cells. Let A be the partition cell generated by the lowest value
of X, call it vA, and B the partition cell generated by the highest value of X. Since Ω
has at least three states, we assume, without loss of generality, that the complement of
A, denoted Ac, has at least two states (if not, then the complement of B must have at
least two states and the same argument applies).

Consider an information structure with two traders. Trader 1’s partition cell at state
a ∈ A also includes state b ∈ Ac so that Π1(a) = {a, b}. For any other state ω ̸= a, b,
Π1(ω) = {ω}. Trader 2’s partition cell at a ∈ A also contains state c ∈ Ac so that
Π2(a) = {a, c} with b ̸= c. For any other state ω ̸= a, c, Π2(ω) = {ω}. Hence, the join
of the two traders’ partitions consists of singleton sets.

Let v be strictly higher than vA and strictly lower than all other values of X. If
we let event E = {a, b, c} ⊆ {ω ∈ Ω : X(ω) ̸= v} = Ω, then Π1(a) ∩ E = {a, b} and
Π2(a) ∩ E = {a, c}. For v, E and state ω = a, we have that for i = 1, 2 there is no
λ ∈ R such that for all ω′ ∈ Πi(ω) ∩ E, (X(ω′) − v)λ > 0. The reason is that both
traders consider possible a state where X has a value strictly higher than v and a state
where X has a value strictly lower than v. Applying Proposition 2, we have that X is
not strongly separable.
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Proof of Theorem 1. (⇐) Suppose X is strongly separable. By construction, F0(ω) ⊇
F1(ω) ⊇ ... ⊇ Fk(ω). As Ω is finite, there exists tk such that Fk′(ω) = Fk(ω) for every
tk′ ≥ tk. We denote this set by F(ω) ≡ Fk(ω).

Define the function g(Ep[X]) = min
q:Eq [X]=Ep[X]

Eq[s(Eq[X], X)− s(z,X)]. We first show

that g is strictly convex in {Ep[X] : p ∈ ∆(Ω)}. Let g(k) = Ep[s(Ep[X], X) − s(z,X)]
and g(m) = Eq[s(Eq[X], X)− s(z,X)]. We have

g(ak + (1− a)m) = g(aEp[X] + (1− a)Eq[X]) = g(Eap+(1−a)q[X]) =

= min
r:Er[X]=Eap+(1−a)q [X]

Er[s(Er[X], X)−s(z,X)] ≤ Eap+(1−a)q[s(Eap+(1−a)q[X], X)−s(z,X)] =

= aEp[s(Eap+(1−a)q[X], X)− s(z,X)] + (1− a)Eq[s(Eap+(1−a)q[X], X)− s(z,X)] <

< aEp[s(Ep[X], X)− s(z,X)] + (1− a)Eq[s(Eq[X], X)− s(z,X)] =

= ag(k) + (1− a)g(m).

Note that g(Ep[X]) ≥ 0 for all Ep[X] and its unique minimizer is at z, where g(z) =
0.45 We then have that g is decreasing at [a, z] and increasing at [z, b], where a =
min{Ep[X] : p ∈ ∆(Ω)} and b = max{Ep[X] : p ∈ ∆(Ω)}. From Lemma 1, the myopic
announcement of Trader i with beliefs PF(ω)∩Πi(ω′) and previous announcement z is given
by dP(F(ω) ∩ Πi(ω

′), z) = argmin
x∈{Ep[X]:p∈PF(ω)∩Πi(ω

′)}
g(x).

Define Ai
ω′ = {Ep[X] : p ∈ PF(ω)∩Πi(ω′)} for every i = 1, ..., n and ω′ ∈ F(ω). If

z (the unique minimizer of g(Ep[X]) for all p ∈ ∆(Ω)) is less than or equal to the
minimum value of Ai

ω′ , then that minimum value is the minimizing value of g(x) given
PF(ω)∩Πi(ω′) and therefore the myopic announcement. Similarly, if z is greater or equal
to the maximum value of Ai

ω′ , then that maximum value is the minimizing value of g(x)
given PF(ω)∩Πi(ω′) and therefore the myopic announcement. If z is inside Ai

ω′ , then the
myopic announcement is z. This is due to the strict convexity of g and the fact that z
is the global minimum.

Note that for all t ≥ tk, A
i
ω′ is constant for all i and ω′ ∈ F(ω) because information

is no longer updated. We now show that traders agree on the myopic announcement.
There are three cases.

Case 1: For some i, Ai =
⋂

ω′∈Fk(ω)

Ai
ω′ = ∅.

This implies that Ai
ω′ ∩ Ai

ω′′ = ∅ for some states ω′, ω′′ ∈ F(ω). From Lemma 1,
Trader i will either make an announcement in Ai

ω′ (if she considers ω′ to be true) or Ai
ω′′

(if she considers ω′′ to be true). As Ai
ω′ ∩Ai

ω′′ = ∅, either ω′ or ω′′ will be revealed not to
be true, which means that not all information has been aggregated yet, a contradiction.

45We can observe that there exists p ∈ ∆(Ω) such that Ep[X] = z. In addition, the set {Ep[X] : p ∈ P}
is an interval as a convex and closed set of the real numbers.
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Case 2: Ai ̸= ∅ for all i ∈ I and
⋂
j∈I

Aj ̸= ∅.

There are two subcases. First, there is v such that for all ω′ ∈ F(ω), X(ω′) = v. From
Lemma 1, the myopic announcement for every Trader is v, hence Traders agree on the
announcement. Second, there are two states ω′, ω′′ ∈ F(ω) such that X(ω′) ̸= X(ω′′).
This means that the first part of Definition 3 of a not strongly separable security is
satisfied for PF(ω). Let z ∈

⋂
j∈I

Aj ̸= ∅. From Lemma 1, part (iii), if the previous

announcement is z and z ∈ Ai, then Trader i will also announce z. We then have that
dPF(ω)

(Πi(ω
′), z) = z for all i = 1, ..., n and ω′ ∈

⋃
p∈PF(ω)

Supp(p). But this implies that

X is not strongly separable, a contradiction.

Case 3: Ai ̸= ∅ for all i ∈ I but
⋂
j∈I

Aj = ∅.

We first make two observations. From the second property of Lemma 1, each Trader
j makes an announcement in Aj

ω′ for some ω′ ∈ F(ω). As all information has been
aggregated after tk, any such myopic announcement must be in Aj. Second, the third
property of Lemma 1 shows that if the previous announcement of Trader i− 1 is in Ai,
then Trader i will repeat the same announcement. Combining these two observations,
we have that if the announcement changes, from Trader i− 1 to Trader i, then it must
be that Trader i is announcing either the right hand side extreme point of Ai (i.e. the
maximum) or the left hand side extreme point of Ai (i.e. the minimum). In that case,
if she announces the maximum (minimum) of Ai, then this is equal to the maximum
(minimum) of Ai

ω′ for all ω′ ∈ F(ω), otherwise there would be further information
aggregation.

Define i0 = min{i :
⋂

j∈{1,...,i}
Aj = ∅}. Given that

⋂
j∈I

Aj = ∅, i0 exists. Moreover,

Ai0 has an empty intersection with
⋂

j∈{1,...,i0−1}
Aj and, without loss of generality, suppose

that Ai0 is on the left hand side of
⋂

j∈{1,...,i0−1}
Aj. Given that

⋂
j∈{1,...,i0−1}

Aj is an interval,

we can conclude that there are Ai1 and Ai2 such that one of them defines the left hand
side extreme point of the interval and the other one the right hand side extreme point.

From the second property of Lemma 1, each Trader j makes an announcement in
Aj. Hence, for any value yk−1, trader i3 = max{i1, i2} makes a prediction belonging in
the set

⋂
j∈{1,...,i0−1}

Aj. For the same reason, any subsequent announcement up to i0 − 1

also belongs to
⋂

j∈{1,...,i0−1}
Aj. From the convexity of g and the fact that Ai0 is to the left

of that interval, the prediction of i0 is always the right hand side extreme point of Ai0 ,
which we denote by v0. Moreover, it cannot be that the right hand extreme point of Ai0

is different from the right hand extreme point of Ai0
ω′ for some ω′ ∈ F(ω), otherwise it

would be revealed that ω′ is not true.
As i3 makes some announcement vi3 > v0 and i3 will announce in the next round,

it must be that some Trader j after i0 will change the announcement to some v′ > v0.
Then, it must be that v′ is the left hand extreme point of Aj. Using the same argument
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as in the previous paragraph, it cannot be that the left hand extreme point of Aj is
different from the left hand extreme point of Aj

ω′ for some ω′ ∈ F(ω), otherwise it would
be revealed that ω′ is not true.

We then have that for all p ∈ PF(ω) for all ω′ ∈ F(ω), Ep[X|Πi0(ω
′)] ≤ v0 < v′ ≤

Ep[X|Πj(ω
′)]. Integrating over all ω′ ∈ F(ω) and since F(ω) is common knowledge at

ω, we have that Ep[X] ≤ v0 < Ep[X] for all p ∈ PF(ω), a contradiction.
(⇒) Suppose that for any regular ΓM , information aggregates so that yk(ω) =

dP(Πak(ω) ∩ Fk−1(ω), yk−1) −→ X(ω) for every ω ∈
⋃
p∈P

Supp(p). We show that, for

any regular P and v ∈ R, if (ii) in Definition 3 is satisfied, then (i) is violated.
Suppose there exist regular P and v ∈ R such that dP(Πi(ω), v) = v for all i =

1, ..., n and ω ∈
⋃
p∈P

Supp(p). Consider regular ΓM(Ω, I,Π, X,P , y0, y, y, s) with initial

announcement y0 = v. Then, the predictions ytk(ω), k = 0, 1, ..., are equal to v for
all ω ∈

⋃
p∈P

Supp(p). If we have X(ω) ̸= v for some ω ∈
⋃
p∈P

Supp(p), then at ω all

traders agree on v, which is the wrong value of the security. This implies that there
is no information aggregation, a contradiction. Hence, condition (i) in Definition 3 is
violated and X is strongly separable.

B Proofs for the strategic environment

Before proving Theorem 2, we state the following auxiliary result, which shows that a
trader’s continuation value is always greater than her one-period payoff.

Proposition 4. In a Revision-Proof equilibrium, the continuation value for Trader i
who plays at tk is at least as much as her utility from the one-period payoff from playing
the myopic best response.

Proof. We construct a deviation strategy that guarantees a continuation value at least
as much as that of the one-period payoff from playing the myopic strategy. We will show
that for each tk, the continuation payoff of Trader i who makes the announcement is
weakly more than χk, her one-period payoff from playing the myopic strategy at tk.

We define a deviation strategy σ = (σi, σ
∗
−i), where all traders j ̸= i follow the

equilibrium strategy σ∗ and σi is identical to σ∗
i up to time tk−1. At tk, σi specifies that

Trader i plays the myopic best response. Given that i deviates and all other traders stick
to the equilibrium strategy σ∗, let H1, ..., Hm be the possible paths of announcements
by all other traders j ̸= i from tk to tk+n−1, together with the common history of
announcements up to tk−1. They are finitely many because we consider mixing over
finite actions. At tk+n, σi specifies that:

(a) If V (Hm, ϕ, σ,P) ≥ 0 by playing what σ∗
i prescribes at H

m, then σi coincides with
σ∗ in every succeeding information set,
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(b) If V (Hm, ϕ, σ,P) < 0, then σi repeats the previous trader’s prediction.

If (a) occurs, then σi coincides with σ∗ in every succeeding information set, so Trader
i follows the recommendation of σi. If (b) occurs, then Trader i repeats the previous
announcement and in every succeeding information set, σi is determined using the two
cases (a) and (b). For every other information set not specified by the above procedure,
σi is identical to σ∗

i .
We now show that at (b), Trader i will follow the recommendation to repeat the

previous announcement and get a period payoff of zero. This is true if her continuation
value, excluding her current period payoff, is weakly positive, as long as all future selves
follow σ. We now show that this is true at all t ≥ tk. We show this for t = tk, without
loss of generality, and note that, from i’s perspective, there are two types of subsequent
paths, given that everyone follows σ. The first type is a path that specifies some zero
payoffs initially, and at some time t > tk+n the continuation value of i’s future self
is weakly positive by playing σ∗ onwards. The second type is a path where the future
selves just repeat the previous announcement because from σ∗ they would get a negative
continuation value, hence the payoffs along this path are zero always. This means that
all paths have a weakly positive continuation value at some time t > tk, and the previous
payoffs between tk and t are zero. Hence, it is without loss of generality to assume that
the future selves at period tk+n and at each path, compute weakly positive continuation
value. However, because of Dynamic Inconsistency the continuation value at some path
at tk+n may be evaluated at a different prior than the one that Trader i uses at tk to
evaluate her own continuation value. The collection of all paths generates a partition Π
of state space Φ and σ generates a sequence of acts fm, for each t > tk. We therefore
have, for each E ∈ Π, and from the perspective of the future selves in time tk+n, that

0 ≤ min
p∈P

EpE

∞∑
m=0

βnmu(fk+n+nm) = EqE

∞∑
m=0

βnmu(fk+n+nm).

At every partition cell E, the future self at tk+n chooses a potentially different belief
qE. Let p be the belief that Trader i uses at tk to compute her continuation value. We
then have that

0 ≤ EqE

∞∑
m=0

βnmu(fk+n+nm) ≤ EpE

∞∑
m=0

βnmu(fk+n+nm).

By multiplying with β and p(E), and adding over all E ∈ Π, we have

0 ≤ β
∑
E∈Π

p(E)EpE

∞∑
m=0

βnmu(fk+n+nm) ≤ Ep

∞∑
m=0

βnm+1u(fk+n+nm).

This shows that the continuation value at any t ≥ tk is weakly positive if Trader i repeats
the previous announcement at t and gets a period payoff of zero. Therefore, she will
always follow the recommendation at (b), if by sticking to σ∗ her continuation value is
strictly negative.
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At tk, Trader i plays her myopic best response Eq[X] and gets a period payoff of χk(q),
which is weakly positive, where q solves min

q∈P
χk(q). Her continuation value is evaluated at

some p and therefore we have χk(q) ≤ χk(p). Because Ep

∑∞
m=0 β

nm+1u(fk+n+nm) ≥ 0,
we have χk(p) + Ep

∑∞
m=0 β

nmu(fk+n+nm) ≥ χk(q). Hence, her continuation value is
always weakly greater than her period payoff by playing the myopic best response.

Proof of Theorem 2. For part (i), the proof closely follows that of Ostrovsky (2012) and
proceeds in four steps. The main innovations are in Step 1, where the arguments for
establishing the lower bound of the instant opportunity are very different, and in Step
4, where we need to account for the multiplicity of beliefs.

Step 1: We show that if the security is strongly separable and its value is not con-
stant for each state in the support of the set of beliefs, at least one trader can achieve
a strictly positive payoff at some state and a weakly positive payoff at all other states,
whatever the previous announcement.

Let Pk be the beliefs over Ω of an outside observer who hears the announcements
up to tk−1 and updates the initial set of beliefs P given the equilibrium strategies but
has no private information about Ω. Let Supp(Pk) be the union of the supports of all
p ∈ Pk. For each ω ∈ Supp(Pk) and i ∈ I, define Aik

ω = {Ep[X|Πi(ω)] : p ∈ Pk} to
be the set of all myopic best responses of Trader i and let minAik

ω (maxAik
ω ) be the

minimum (maximum) value. We first show that, in any equilibrium, the announcement
of Trader i gets arbitrarily close to the announcement of Trader i− 1 and to Aik

ω , for all
ω ∈ Supp(Pk), as tk → t∞. Note that Aik =

⋂
ω∈Supp(Pk)

Aik
ω cannot be empty, otherwise

the outside observer would understand that some state ω is not true, because the an-
nouncements do not get arbitrarily close to Aik

ω as tk → t∞. Hence, the announcements
get arbitrarily close to Aik as well.

Lemma 3. For any ϵ > 0 and Trader i, there is period t′ such that for all tk > t′ where
i makes an announcement, |yk − yk−1| < ϵ and yk ∈ [minAik

ω − ϵ,maxAik
ω + ϵ], for all

ω ∈ Supp(Pk).

Proof. We first show that, for any ϵ > 0, if Trader i − 1’s announcement z is outside
[minAik

ω − ϵ,maxAik
ω + ϵ], for some state ω and time tk, then i’s expected payoff from

playing her myopic best response is greater than some χk > 0. For all z < minAik
ω − ϵ,

i’s myopic best response at ω is minAik
ω = Ep1 [X] for some p1 ∈ Pk

Πi(ω)
, where Pk

Πi(ω)

are i’s beliefs at time tk and state ω, given the equilibrium play up to time tk−1. Her

period utility is Ep1

(
s
(
minAik

ω , X
)
− s

(
z,X

))
> Ep1

(
s
(
minAik

ω , X
)
− s

(
minAik

ω −

ϵ,X
))

= l1k > 0. The inequality follows because minAik
ω − ϵ is closer to Ep1 [X] than z

so that the score s increases because any scoring rule is order sensitive. Similarly, for all
z > maxAik

ω + ϵ, i’s myopic best response is maxAik
ω = Ep2 [X] for some p2 ∈ Pk

Πi(ω)
. Her
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period utility is Ep2

(
s
(
maxAik

ω , X
)
− s

(
z,X

))
> Ep2

(
s
(
maxAik

ω , X
)
− s

(
maxAik

ω +

ϵ,X
))

= l2k > 0. Hence, for all z /∈ [minAik
ω − ϵ,maxAik

ω + ϵ], i’s period utility at ω

from playing the myopic best response is higher than χk = min{l1k, l2k} > 0.
We next show that χk cannot converge to 0 as tk → t∞. Consider the set of beliefs

{pk} for which the myopic best response is calculated for each tk. Since the set of all

beliefs is compact, there is a converging sequence {pk} of beliefs. If lim
pk→p

Epk

(
s
(
Epk [X]+

ϵ,X
)
−s

(
Epk [X], X

))
= 0, the continuity of the scoring rule implies that Ep

(
s
(
Ep[X]+

ϵ,X
))

= Ep

(
s
(
Ep[X], X

))
so that both announcements Ep[X] + ϵ and Ep[X] are

optimal given p, contradicting that s is a strictly proper scoring rule.
From Proposition 4, Trader i’s continuation payoff in equilibrium must be weakly

higher than her one-period payoff χk. This implies that if Trader i− 1 makes announce-
ments outside of [minAik

ω − ϵ,maxAik
ω + ϵ] for infinitely many tk, then i’s expected

continuation payoff (which is greater than χk) does not converge to zero. We now show
that this is impossible.

Suppose not. Then, the expected continuation payoff for i is bounded below by a
positive number. For all other traders it is weakly positive, again using Proposition 4 and
because their one-period payoff is always weakly positive. Given that the continuation
payoff is minimized over all beliefs in Pk, we can pick any p ∈ Pk and define Ψk to be
the sum of all traders’ expected continuation payoffs (given that p) at tk, divided by βk,

Ψk = (sk − sk−1) + β(sk+1 − sk) + β2(sk+2 − sk+1) + . . .

The sk is the expected score of prediction yk, where the expectation is over all ϕ given
some p ∈ Pk and the moves of players according to the mixed equilibrium.

For any K, we have

K∑
k=1

Ψk = (s1 − s0) + β(s2 − s1) + β2(s3 − s2) + . . .

+ (s2 − s1) + β(s3 − s2) + β2(s4 − s3) + . . .

+
...

+ (sK − sK−1) + β(sK+1 − sK) + β2(sK+2 − sK+1) + . . .

= (sK − s0) + β(sK+1 − s1) + β2(sK+2 − s2) + . . .

≤ 2M/(1− β),

where M = max
y∈[y,y],ω∈Ω

|s(y,X(ω))|. But this contradicts the fact that i’s expected contin-

uation payoff is bounded below by a positive number. We then have that, in equilibrium,
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Trader i−1 makes announcements that are arbitrarily close to Aik
ω for each ω ∈ Supp(Pk),

hence arbitrarily close to Aik. Given that
K∑
k=1

Ψk is bounded above by a positive number

for any K, and each Ψk is weakly positive, we have that lim
K→∞

K∑
k=1

Ψk = χ0 for some finite

χ0.
We finally show that, given that i − 1 announces arbitrarily close to Aik, the an-

nouncement of i gets arbitrarily close to the announcement of i− 1 in equilibrium, and
therefore the announcements of i get arbitrarily close to Aik. Suppose not, so that
|yk − yk−1| > ϵ for a fixed ϵ and for infinitely many tk, where i makes an announcement.
Suppose that in every tk, where i makes an announcement, we evaluate i’s period payoff
at tk using pk ∈ Pk

Πi(ω)
, such that Epk [X] = yk−1 if yk−1 ∈ Aik

ω , Epk [X] = minAik
ω if

yk−1 < minAik
ω (but arbitrarily close to it) or Epk [X] = maxAik

ω if yk−1 > maxAik
ω (but

arbitrarily close to it). In all cases and since i − 1’s announcement is arbitrarily close

to Aik
ω , we have that i’s period payoff Epk

(
s
(
yk, X

)
− s

(
yk−1, X

))
is strictly negative.

As scoring rules are order sensitive, we have that the period payoff will also be strictly
negative if i’s announcement is exactly ϵ away from the announcement of i− 1. By col-

lecting these pk for all such tk, we have that Epk

(
s
(
Epk [X]+ϵ,X

)
−s

(
Epk [X], X

))
< 0,

where s
(
yk−1, X

)
is arbitrarily close to s

(
Epk [X], X

)
, by continuity.46

Since the set of all beliefs is compact, there is a converging sequence {pk} of beliefs.

If lim
pk→p

Epk

(
s
(
Epk [X] + ϵ,X

)
− s

(
Epk [X], X

))
= 0, the continuity of the scoring rule

implies that Ep

(
s
(
Ep[X] + ϵ,X

))
= Ep

(
s
(
Ep[X], X

))
so that both announcements

Ep[X]+ϵ and Ep[X] are optimal given p, contradicting that s is a strictly proper scoring

rule. If lim
pk→p

Epk

(
s
(
Epk [X] + ϵ,X

)
− s

(
Epk [X], X

))
< 0, i’s period payoff given some

beliefs pk is bounded above by a strictly negative number. But this is the first element of

some Ψk. We have already shown that
K∑
k=1

Ψk is bounded above by a positive number for

each K and each Ψk is weakly positive because a trader can always repeat the previous
announcements, as shown in Proposition 4. Therefore, we have that lim

k→∞
Ψk = 0, which

contradicts that the first term can be bounded above by a negative number. Since this is
true for all states in Supp(Pk), the above statements are also true for Aik and the result
follows. That is, given that i− 1 announces arbitrarily close to Aik, the announcement
of i gets arbitrarily close to the announcement of i− 1 in equilibrium, and therefore the
announcements of i get arbitrarily close to Aik.

46We assume, without loss of generality, that i’s announcement is always ϵ-higher than the previous
announcement. Similar arguments can be employed if it was always ϵ-lower or it was alternating as we
can always get a subsequence of pk for which i’s announcement is always higher (or lower).
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Given an equilibrium, the updating of beliefs Pt may never stop for sufficiently high
tk, as traders play their mixed strategies and do prior-by-prior updating. Let P be a set
of limit beliefs of this sequence {Pk} with some probability. Let D be the collection of
these sets of limit beliefs that describe some uncertainty about the value of the security.
That is, for each P ∈ D, there exist ω, ω′ ∈

⋃
p∈P

Supp(p) such that X(ω) ̸= X(ω′).

From Lemma 1, we know that given beliefs P ∈ D and at any state ω ∈
⋃
p∈P

Supp(p),

each Trader j can achieve a weakly positive payoff by making the myopic announcement
min

p∈PΠj(ω)

Ep

[
s(Ep[X], X)− s(z,X)

]
, where z is the previous announcement.

Generalizing the notion of Ostrovsky (2012), we define the instant opportunity of
Trader i, given beliefs P ∈ D and previous announcement z, to be

min
q∈P

∑
ω∈Ω

q(ω)

[
min

p∈PΠi(ω)

Ep

[
s
(
Ep[X], z), X

)
− s

(
z,X

)]]
.

Note that at each partition cell Πi(ω), Trader i chooses a possibly different p ∈ PΠi(ω)

that minimizes her expected utility. The instant opportunity is the ex ante (minimal
over P) expected utility aggregated over all partition cells.

The following lemma shows that if the security X is strongly separable and beliefs
P ∈ D describe some uncertainty about X, then the instant opportunity of some Trader
i is strictly positive irrespective of what the previous announcement is.

Lemma 4. If security X is strongly separable, then for every P ∈ D, there exist χ > 0
and i ∈ I such that, for every z ∈ R, the instant opportunity of i given P and z is
greater than χ.

Proof. Note that the expression for the instant opportunity inside the brackets,

min
p∈PΠi(ω)

Ep

[
s
(
Ep[X], z), X

)
− s

(
z,X

)]
, (1)

is i’s expected payoff given Πi(ω) when making the myopic announcement and the pre-
vious announcement is z. From Lemma 1, this is weakly positive for all ω ∈

⋃
p∈P

Supp(p).

Moreover, given that P is regular, each p ∈ P assigns positive probability to each Πi(ω)
where ω ∈

⋃
p∈P

Supp(p) = E. Therefore, we only need to show that there exists some

trader i ∈ I, such that for any z, there is some Πi(ω) for which the expression in (1) is
above a strictly positive lower bound. Note that the lower bound must be the same for
all z.

For each ω and i ∈ I, define Ai
ω = {Ep[X|Πi(ω)] : p ∈ P} and let minAi

ω (maxAi
ω)

be the minimum (maximum) value. Let Ai =
⋂

ω∈F
Ai

ω. There are three cases.

Case 1: For some i, Ai = ∅.
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Let i be such that Ai = ∅. Given that each Ai
ω is a convex set, there exist states

a, b ∈ E with Ai
a = [c, d], Ai

b = [c′, d′] such that c′ > d. Let k = (c′ − d)/2 and z
be the previous announcement. If z > k, then min

p∈PΠi(a)

max
y∈[y,y]

Ep

[
s(y,X) − s(z,X)

]
=

min
p∈PΠi(a)

Ep

[
s(Ep[X], X)− s(z,X)

]
= Ep∗

[
s(Ep∗ [X], X)− s(z,X)

]
≥ Ep∗

[
s(Ep∗ [X], X)−

s(k,X)
]
≥ min

p∈PΠi(a)

Ep

[
s(Ep[X], X) − s(k,X)

]
≡ χ1 > 0.47 Similarly, if z ≤ k, then

min
p∈PΠi(b)

max
y∈[y,y]

Ep

[
s(y,X)− s(z,X)

]
≥ min

p∈PΠi(b)

max
y∈[y,y]

Ep

[
s(y,X)− s(k,X)

]
≡ χ2 > 0. The

lower bound χ > 0 is just the minimum of χ1 and χ2. Moreover, it is independent of
the previous announcement z.

Case 2: Ai ̸= ∅ for all i ∈ I and
⋂
j∈I

Aj ̸= ∅.

This is the same as Case 2 in the proof of Theorem 1. There are two subcases. First,
in all states that are considered possible, security X pays the same. This is impossible
because we have assumed that there is uncertainty about X given P . Second, there is
uncertainty about X. As we showed in Case 2 in the proof of Theorem 1, this implies
that X is not strongly separable, a contradiction.

Case 3: Ai ̸= ∅ for all i ∈ I but
⋂
j∈I

Aj = ∅.

We will show that this case is impossible. Lemma 3 shows that in any set of beliefs
Pt that can arise in equilibrium after a sufficiently large tk, i’s announcements get
arbitrarily close to Ait. Moreover, Trader i’s announcements get arbitrarily close to
the announcements of i − 1, which get arbitrarily close to Ai−1t. At the limit set of
beliefs P , we have that Ai−1 ∩ Ai ̸= ∅ for each i ∈ I. Continuing inductively over all
traders, we have that

⋂
j∈I

Aj ̸= ∅, a contradiction.

Step 2: We construct a stochastic process describing how the beliefs of an outside
observer about the realized state ϕ are updated and establish its martingale properties.
Let P be the common set of priors given a (possibly mixed) strategy σ. Consider the
following stochastic process, which is the same as in step 2 of the proof of Theorem 1 of
Ostrovsky (2012) with the only difference that it is applied to each p ∈ P instead of the
unique p. Nature draws a state ϕ ∈

⋃
p∈P

Supp(p) and each player i observes Πi(ω(ϕ)).

Based on her private information and her strategy, player 1 announces y1. An outside
observer, who shares the same set of beliefs P and knows strategy σ but has no private
information about the state ω, updates each p ∈ P using Bayes’ rule. Note that the
regularity of P implies that all elements of P are updated. Denote this set as P1.

47 The inequality is true because a proper scoring rule is ‘order-sensitive’ so that the further away
the forecast is from the true expected value, the lower is the expectation of the score (see p. 2618 in
Ostrovsky (2012)).
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At time tk, the outside observer updates these beliefs, denoted Pk, using the public
announcements up to tk and the equilibrium strategies. Note that from the regularity of
P , each Pk is compact and convex. As explained in Ostrovsky (2012), the process Q of
updating p ∈ P at each time t is a martingale due to the law of iterated expectations.
Given that it is also bounded (as it is between 0 and 1), the martingale convergence
theorem implies that each Q converges to some random variable q∞. Since this is true
for all p ∈ P and all corresponding martingales, we denote the set of the limits of all
convergent beliefs by Q∞.

Step 3: We show that if the statement of Theorem 2 does not hold for this equi-
librium, then we can identify a ‘non-vanishing arbitrage opportunity:’ there is a player
i∗ and a positive number η∗, such that the continuation value of player i∗ exceeds η∗ at
infinitely many trading times tk.

Step 3, Case 1: Suppose that for some ϕ ∈
⋃
p∈P

Supp(p), there is positive probability

that some random variable q ∈ Q∞ assigns positive likelihoods to two states a and b
with X(a) ̸= X(b), where qk converges to q. As shown by Ostrovsky (2012), there exists
probability distribution r assigning positive probability to both a and b, such that the
following is true. For any ε > 0, there exist K and ζ > 0 such that, for any k > K,
the probability that qk, which converges to q, is in the ε-neighbourhood of r is greater
than ζ. This can be done for every q ∈ Q∞ and, in that case, the K can be selected
uniformly because it is affected only by the uncertainty due to mixed strategies.48

Any compact and convex set of beliefs P which contains these limit probability
distributions describes some uncertainty about X, hence it belongs to D. Lemma 4
shows that there is player i and χ > 0, such that i’s instant opportunity is greater than
χ given P and any previous announcement z.

As the definition of instant opportunity minimizes over all available beliefs, there is
player i and χ > 0 such that i’s instant opportunity (using any combination of q and p in
the definition of instant opportunity) is greater than χ for any previous announcement
z. By continuity, we can conclude that this is true for any combination of qt and pt (of
the definition of instant opportunity), hence we get that the instant opportunity at t (for
t big enough) is greater than χ > 0 for any previous announcement for some probability
ζ > 0.49

Concluding, for some i, χ > 0, tK and ζ > 0, i’s instant opportunity at any time
tnk+i > tK is greater than χ with probability at least ζ, and thus for i, tK and η = χζ > 0,
the expected instant opportunity of player i at any time tnk+i > tK is greater than η.

Step 3, Case 2: Suppose that there is zero probability that some q ∈ Q∞ assigns
positive likelihoods to two states a and b with X(a) ̸= X(b). That is, at the limit, the

48Note that the only change in beliefs after some time t arises because they are weighted by the
unique mixed strategy. Therefore, the convergence to q∞ is uniform.

49A proper scoring rule may not be continuous. However, Ostrovsky (2012) shows, in footnote 19 of
p. 2620, that the instant opportunity is continuous, the way he defines it. This implies that our instant
opportunity is also continuous.
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outside observer believes with certainty that the value of the security is equal to some
x. As shown in Section A.2.4 of Ostrovsky (2012), almost surely (with probability 1),⋃
p∈Q∞

Supp(p) contains the true state h. Hence, with probability 1, all q ∈ Q∞ assign

probability 1 to the value of the security being X(h) = x. In other words, the outside
observer’s belief about the value of the security converges to the intrinsic value.

Suppose that yk does not converge in probability to the intrinsic value of the security.
Then, there exist state h, numbers ϵ, δ > 0 such that when h is the true state and for
any K, there exists k > K such that the probability that |yk−X(h)| > ϵ is greater than
δ. As all players have more information than the outside observer, their beliefs about
the value of the security also converges to the intrinsic value. This implies that for some
player i and some η > 0, for any K, there exists tnk+i > tK such that her expected
instant opportunity is greater than η.

As a conclusion, in both Case 1 and Case 2, there exist player i∗ and value η∗ > 0
such that there is an infinite number of times tnκ+i∗ in which the expected instant op-
portunity of player i∗ is greater than η∗. Fix i∗ and η∗.

Step 4: This step concludes the proof by showing that the presence of a ‘non-
vanishing arbitrage opportunity’ is impossible in equilibrium.

Let P(Hk−1) be the set of updated beliefs for the outside observer at time tk, given
the mixed equilibrium, the set of prior beliefs P and history Hk−1. Note that with mixed
strategies, Hk−1 occurs with some probability. Moreover, because the equilibrium profile
may consist of mixed strategies, P(Hk) may not be the same as P(Hk−1), however for
big enough tk, they will have the same support on the state space Ω as it is finite.
Consider such a big enough tk.

Fix tk, history Hk−1 and suppose i makes an announcement. Her continuation payoff

given historyHk−1 and state ϕ is V (Hk−1, ϕ) = min
p∈P(Hk−1,ϕ)

Ep

∞∑
m=0

βnm (sk+nm(ϕ
′)− sk+nm−1(ϕ

′)),

where sk+nm(ϕ
′) is the score at state ϕ′ and time tk+nm.

Using Proposition 4, we have that her continuation payoff V (Hk−1, ϕ) is greater than
the one-period payoff from playing the myopic strategy at tk. Because this is true for
all states ϕ ∈

⋃
p∈P(Hk−1)

Supp(p) that the outside observer considers possible at tk, given

history Hk−1, we have that min
p∈P(Hk−1)

EpV (Hk−1, ϕ) is greater than i’s instant opportunity

given beliefs P(Hk−1).
Again using Proposition 4, the continuation payoff at tk of each Trader j ̸= i, who

announces at tk, is weakly positive at each state ϕ and history Hk−1. Since this is true
for all states ϕ ∈

⋃
p∈P(Hk)

Supp(p), we have that min
p∈P(Hk−1)

EpV (Hk−1, ϕ) ≥ 0.

Since min
p∈P(Hk−1)

EpV (Hk−1, ϕ) is weakly positive for each i ∈ I, we have that
∑
i∈I

EpV (Hk−1, ϕ)

is weakly positive for any p ∈ P(Hk−1). Moreover, it is strictly positive if i’s instant
opportunity is strictly positive given P(Hk−1). Since this is true for all p ∈ P(Hk−1)
and any previous announcement, by fixing prior q ∈ P and considering the (unique)
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probability over histories Hk−1 that can arise at tk, generated by the (possibly) mixed
equilibrium, we can let Ψk be the sum of all players’ expected continuation payoffs at
tk, divided by βk as

Ψk = (sk − sk−1) + β(sk+1 − sk) + β2(sk+2 − sk+1) + . . .

The sk is the expected score of prediction yk, where the expectation is over all ϕ, given
the fixed q ∈ P and the moves of players according to the mixed equilibrium. We keep
q ∈ P constant for all tk. We then have that Ψk is weakly positive. Additionally, it is
strictly positive if i’s expected instant opportunity is strictly positive and it is i’s turn
to make an announcement. That is, with some probability, some history Hk−1 occurs
and i’s instant opportunity is strictly positive.

The last step is identical to that of Ostrovsky (2012) because all Ψk are calculated

using the same prior q ∈ P . The proof of Lemma 3 shows that lim
K→∞

K∑
k=1

Ψk = χ0 for some

finite χ0. From Step 3, this limit must be infinite because each Ψk is weakly positive and
an infinite number of them is greater than η∗. Hence, both cases of Step 3 are impossible
and yk must converge to the intrinsic value of security X.

For part (ii), suppose X is not strongly separable under Π and s. Then, there exist
P ⊆ ∆(Ω), regular with respect to each Πi and v ∈ R, such that (a) X(ω) ̸= v for some
ω ∈

⋃
p∈P

Supp(p) and (b) dP(Πi(ω), v) = v for all i = 1, ..., n and ω ∈
⋃
p∈P

Supp(p).

Consider game ΓS(Ω, I,Π, X,P , y0, y, y, s, β), where the initial announcement of the
market maker is y0 = v. We will construct a Revision-Proof equilibrium (σ∗,P), where
information does not aggregate. Define pair (σ∗,P), where σ∗ specifies that each Trader
i announces v after any history. At each information set I of Trader i, set P(I) = PΠi(ω).
A player may deviate by not announcing at some period tk the myopic best response v.
All other players will continue announcing v in all subsequent periods and no information
is revealed. Hence, she will not gain anything and her best response would be the myopic
announcement v.

Since v is announced irrespective of whether a player deviates, there is never any
information revealed and (σ∗,P) is consistent. We now argue that it is not possible
to find an alternative strategy that will make i’s future selves weakly better off and
at least one strictly better off. If Trader i deviates, everyone else plays v and there is
no updating of information so her future selves have the same beliefs as i. Since the
myopically optimal is to play v for every future self, then it is not possible for such a
deviation to exist.
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C Examples

In this section, we discuss the robustness of our results. We first show that the negative
result that separable securities may not aggregate information under ambiguity does not
depend on some priors assigning probability zero to the true state as in the example of
Section 2. Such a case is illustrated in Example 1, where all priors have full support.
We also use Example 1 to show that if a security assigns different values to each state,
and therefore can predict all events, it is not necessarily strongly separable.

Example 1. Consider state space Ω = {ω1, ..., ω6} and information structure with Π1 =
{{ω1, ω3}, {ω2, ω4}, {ω5, ω6}}, Π2 = {{ω1, ω2, ω6}, {ω3, ω4, ω5}} and Π3 = {{ω1, ω2}, {ω3, ω5}, {ω4, ω6}}.
The security is X(ω1) = X(ω5) = 0, X(ω2) = X(ω6) = 2, X(ω3) = 1 and X(ω4) = −1.

To show that the security is separable, we show that the condition of Proposition 1
is always satisfied. In particular, for each v ∈ R, we specify λi : Πi → R for i = 1, 2, 3
such that, for every state ω with X(ω) ̸= v,

(X(ω)− v)
∑
i∈I

λi(Πi(ω)) > 0.

Whenever λi(Πi(ω)) is not specified, it is implicitly set to 0.

• For v ≥ 2, set λ1(Π1(ω)) < 0 for all ω ∈ Ω,

• For v ∈ [1, 2), set λ1(Π1(ω1)) = −2, λ2(Π2(ω1)) = 1, λ2(Π2(ω3)) = −1,

• For v ∈ [0, 1), set λ1(Π1(ω1)) = 1.4, λ1(Π1(ω2)) = 1.6, λ1(Π1(ω5)) = 1, λ2(Π2(ω1)) =
−0.5, λ2(Π2(ω3)) = −4, λ3(Π3(ω1)) = −1, λ3(Π3(ω3)) = 2.7, λ3(Π3(ω4)) = 2,

• For v ∈ [−1, 0), set λ1(Π1(ω1)) = 1, λ1(Π1(ω2)) = 1, λ1(Π1(ω5)) = 1, λ2(Π2(ω3)) =
−1.5, λ3(Π3(ω3)) = 1,

• For v < −1, set λ1(Π1(ω)) > 0 for all ω ∈ Ω.

However, the security is not strongly separable. To see this, suppose that the market
maker’s initial announcement is y0 = 0.5 and consider any strictly proper scoring rule.
Given y0, consider any compact and convex set of priors that includes the priors p1 =
(1
8
, 1
8
, 1
8
, 1
8
, 3
8
, 1
8
), p2 = ( 6

18
, 1
18
, 7
18
, 2
18
, 1
18
, 1
18
) and p3 = (3

8
, 1
8
, 1
8
, 1
8
, 1
8
, 1
8
). It is easy to check

that the expectation of X, conditioning p1 on Trader 1’s information, is 0.5 at all states.
The same is true for Trader 2 with p2 and Trader 3 with p3. Using the third claim of
Lemma 1, the myopic announcement is 0.5. This is true for all states and all traders.
As X is not constant on Ω, it is not strongly separable and there is no information
aggregation at any state.

To show that a security that assigns different values to each state, and therefore
can predict all events, is not always strongly separable, consider the following counter
example. Let security X ′ that pays {1, 3.6, 6, 3.1, 3, 4} in states ω1 to ω6, respectively.
We can easily check that, when v = 3.5 and E = Ω, no trader knows at some state
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ω ∈ E whether the value of the security is always above or below 3.5, hence the condition
of Proposition 2 is violated.

The previous example, together with that of Section 2, shows that information ag-
gregation can fail for separable securities, when there are multiple priors. However, in
both cases the failure occurs for a (potentially) unique announcement of the market
maker. An interesting question is whether there are examples where the failure occurs
for several different announcements from the market maker. We show here how such
examples can easily be constructed.

Consider two examples, A and B, with the same set of traders I, state spaces ΩA,ΩB,
prior beliefs PA,PB, securities XA, XB which are separable, information structures
ΠA = {ΠA

i }i∈I ,ΠB = {ΠB
i }i∈I and suppose there is failure of information aggregation

for initial announcements xA ̸= xB at states ωA, ωB, respectively. We can then create a
new example, C, which is just the concatenation of the previous two, where the infor-
mation aggregation failure occurs at both xA and xB. In particular, let ΩC = ΩA ∪ ΩB

and ΠC
i (ω) = ΠA

i (ω) if ω ∈ ΩA, otherwise ΠC
i (ω) = ΠB

i (ω). The set of priors PC con-
sists of all priors pC constructed as follows. For each pA ∈ PA, pB ∈ PB, construct
pC = 1/2pA + 1/2pB. Note that PC is compact, convex and regular with respect to ΠC .

Construct security XC such that XC(ω) = XA(ω) if ω ∈ ΩA, otherwise XC(ω) =
XB(ω). From Proposition 1 and using the same λi, if X

A and XB are separable, then
so is XC . Moreover, since ΩC consists of two disjoint common knowledge events, ΩA

and ΩB, there is no information aggregation for initial announcements xA ̸= xB at
states ωA, ωB ∈ ΩC , respectively. By concatenating more examples like that, one can
construct examples with multiple announcements where information aggregation fails at
some state.

Finally, following Ostrovsky (2012), Example 2 illustrates how the MSR model can
be reinterpreted as a basic model of trading with an automatic inventory-based market
maker who offers to buy or sell at a price p, which is a function of the (possibly negative)
net inventory that he holds. In addition, we show that, in the inventory-based inter-
pretation, information does not always aggregate in the presence of ambiguity averse
traders.

Example 2. Suppose there are two traders, the state space is Ω = {ω1, ω2, ω3, ω4} and
the information structure is Π1 = {{ω1, ω2}, {ω3, ω4}} and Π2 = {{ω1, ω3}, {ω2, ω4}}.
The security is given by X(ω1) = 2, X(ω2) = X(ω3) = X(ω4) = 1 and the price
function is q(z) = e−z, where z is the market maker’s net inventory. The common set
of priors is P = conv{(0, 1

3
, 1
3
, 1
3
), (1

4
, 1
4
, 1
4
, 1
4
)}. Suppose that initially the market maker

holds zero inventory of the security so that z = 0.
Suppose that the true state is ω1. First, Trader 1 makes a decision about how

many shares of the security to buy or sell. We assume, for consistency, that the
amount of shares belong to Z = q−1([y, y]), which is compact. Thus, the trader solves

max
z∈Z

min
p∈P

Ep[
∫ z

0
q(z)−X(ω)dz] = min

p∈P
max
z∈Z

Ep[
∫ z

0
q(z)−X(ω)dz]. We have the equality by

applying the same argument as in the proof of Lemma 1.50

50We use that F (z) =
∫ z

0
q(z)−X(ω)dz is continuous and we follow the arguments of Lemma 1.
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As in Ostrovsky (2012), given the price function, we can define the strictly proper

scoring rule s(X(ω), y) =
∫ q−1(y)

0
q(z) − X(ω)dz. We have that the price function p is

one-to-one continuous with a continuous inverse function. Therefore, we can conclude
that in the MSR market, based on that strictly proper scoring rule, the trader solves

max
y∈[y,y]

min
p∈P

Ep[
∫ q−1(y)

0
q(z)−X(ω)dz] = min

p∈P
max
y∈[y,y]

Ep[
∫ q−1(y)

0
q(z)−X(ω)dz].51 We shall show

that if z∗ solves the first optimisation problem and y∗ the second one, then it is p(z∗) = y∗

and that the revenues or losses are the same (i.e. max
z∈Z

min
p∈P

Ep[
∫ z

0
q(z) − X(ω)dz] =

max
y∈[y,y]

min
p∈P

Ep[
∫ q−1(y)

0
q(z)−X(ω)dz]). The conclusion is that the purchase of the optimal

amount of shares and the announcement of the myopic prediction are related with a
one-to-one relation using the pricing function and that the two markets are equivalent
in terms of revenues and losses.

We can observe that for every p ∈ P, the amount z′p that solves the max
z∈Z

Ep[
∫ z

0
q(z)−

X(ω)dz] is unique and that p(z′p) = Ep[X]. Similarly, for every p ∈ P, the prediction y′p

that solves the max
y∈[y,y]

Ep[
∫ q−1(y)

0
q(z)−X(ω)dz] is the y′p = Ep[X], hence q−1(y′p) = z′p.

Therefore, for every p ∈ P, we have that Ep[
∫ z′p
0

q(z)−X(ω)dz] = Ep[
∫ q−1(y′p)

0
q(z)−

X(ω)dz]. We can conclude that min
p∈P

Ep[
∫ z′p
0

q(z) − X(ω)dz] = min
p∈P

Ep[
∫ q−1(y′p)

0
q(z) −

X(ω)dz] and it is achieved in the same p∗.
The optimal quantity of shares z∗ for the ambiguity averse trader is such that q(z∗) =

Ep∗ [X] and the optimal prediction y∗ is such that y∗ = Ep∗ [X] and thus we get the
conclusion.52

Finally, the first trader finds that the belief that achieves the minimum gives at state
ω1 zero probability. From the previous paragraph, we conclude that the optimal amount
to purchase z∗ is such that p(z∗) = 0 ∗ 2 + 1 ∗ 1 = 1 or equivalently (as long as p
is 1-1) z∗ = 0. Hence, she neither buys nor sells any shares (equivalently she would
have announced 1 as her prediction). From symmetry, it is straightforward that the
same would happen for every state in the partition cell {ω3, ω4} and for Trader 2. The
conclusion is that both traders do not purchase shares from the market maker and there
is no information aggregation.

51Similarly, we follow the arguments of Lemma 1 with the continuous function F (y) =
∫ q−1(y)

0
q(z)−

X(ω)dz.
52This is true because of the saddle point inequality and the uniqueness of the optimal quantity and

prediction (given the belief p∗).
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